Application of optimal transport theory to reconstruction of the early Universe
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 303-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of deterministic reconstruction of the past kinetic history of the Universe is shown to be reduced, within the Zel'dovich approximation, to solving a Monge–Ampère equation. A variational representation, due to Y. Brenier, is then employed to devise a “Monge–Ampère–Kantorovich” numerical method of cosmological reconstruction. Results of testing and application of this method are discussed.
@article{ZNSL_2004_312_a20,
     author = {A. N. Sobolevskii and U. Frisch},
     title = {Application of optimal transport theory to reconstruction of the early {Universe}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--309},
     year = {2004},
     volume = {312},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a20/}
}
TY  - JOUR
AU  - A. N. Sobolevskii
AU  - U. Frisch
TI  - Application of optimal transport theory to reconstruction of the early Universe
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 303
EP  - 309
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a20/
LA  - ru
ID  - ZNSL_2004_312_a20
ER  - 
%0 Journal Article
%A A. N. Sobolevskii
%A U. Frisch
%T Application of optimal transport theory to reconstruction of the early Universe
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 303-309
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a20/
%G ru
%F ZNSL_2004_312_a20
A. N. Sobolevskii; U. Frisch. Application of optimal transport theory to reconstruction of the early Universe. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 303-309. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a20/

[1] E. Bertschinger, A. Dekel, “Recovering the full velocity and density fields from large-scale redshift-distance samples”, Astrophys. J., 336 (1989), L5–L8 | DOI

[2] D. Bertsekas, “Auction algorithms for network flow problems: a tutorial introduction”, Comput. Optim. Appl., 1 (1992), 7–66 | MR | Zbl

[3] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44 (1991), 375–417 | DOI | MR | Zbl

[4] Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee, A. Sobolevskiĭ, “Reconstruction of the early universe as a convex optimization problem”, Mon. Not. R. Astron. Soc., 346 (2003), 501–524 | DOI

[5] R. E. Burkard, “Selected topics on assignment problems”, Discrete Appl. Math., 123:1–3 (2002), 257–302 | DOI | MR | Zbl

[6] U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski, “A reconstruction of the initial conditions of the Universe by optimal mass transportation”, Nature, 417 (2002), 260–262 | DOI

[7] G. Loeper, “The inverse problem for the Euler–Poisson system in cosmology”, Arch. Rat. Mech. Anal., 2004 (to appear) | Zbl

[8] R. Mohayaee, R. Brent Tully, U. Frisch, “Reconstruction of large-scale peculiar velocity fields”, Cosmology: Facts and Problems (College de France, Paris, 8–11 June 2004), eds. J. V. Narlikar, J.-C. Pecker (eds.)

[9] P. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ, 1980 | MR

[10] R. Brent Tully, Nearby Galaxies Catalog., Cambridge University Press, Cambridge and New York, 1988

[11] Y. Zel'dovich, “Gravitational instability: an approximate theory for large density perturbations”, Astron. and Astrophys., 5 (1970), 84–89