Rationality, property rights and thermodynamic approach to the market equilibrium
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 275-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suggest a new approach to the description of complex economic systems. The main idea is to represent the phase space of the system by means of linear constraints on the differentials of the defining parameters of the system, i.e., by means of a system of Pfaff equations. Further investigation of the dynamical trajectories could be reduced to the studies of geometry of integral surfaces of the system. This approach assumes a non-conventional definition of the notion of economic equilibrium in terms of nonholonomic systems, more precisely, in terms of statistical thermodynamics. In particular, our approach to economics explains the causes for unemployment and reveals mathematical reasons due to which “shock therapy” in economics of East European countries and Soviet Union in 1990s did not lead to the result promised to the peoples of these countries, in particular, why money fled out of these, poor, countries to the richer ones, and why during the same period China and Vietnam experienced an unusual economic growth. Our approach makes manifest the reasons why honesty in market relations has a price and qualitatively evaluates it; we also indicated the limits of rationality of behavior of market's agents (buyers and sellers).
@article{ZNSL_2004_312_a19,
     author = {V. M. Sergeev},
     title = {Rationality, property rights and thermodynamic approach to the market equilibrium},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {275--302},
     year = {2004},
     volume = {312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a19/}
}
TY  - JOUR
AU  - V. M. Sergeev
TI  - Rationality, property rights and thermodynamic approach to the market equilibrium
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 275
EP  - 302
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a19/
LA  - en
ID  - ZNSL_2004_312_a19
ER  - 
%0 Journal Article
%A V. M. Sergeev
%T Rationality, property rights and thermodynamic approach to the market equilibrium
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 275-302
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a19/
%G en
%F ZNSL_2004_312_a19
V. M. Sergeev. Rationality, property rights and thermodynamic approach to the market equilibrium. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 275-302. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a19/

[1] A. Smith, An Inquiry to the Nature and Causes of the Wealth of Nations, London, 1776

[2] F. A. Hayek, The fatal conceit, Collected Works of F. A. Hayek, University of Chicago Press, 1988

[3] H. Simon, “Rationality in psychology and economics”, The Behavioral Foundations of Economic Theory. Journal of Business, 59 (1986), 209–224, Supplement

[4] D. North, Institutions, Institutional Changes and Economic Performance, Cambridge University Press, Cambridge, 1990

[5] R. Coase, “The nature of the firm”, Economica, 4 (1937), 386–405 | DOI

[6] R. Coase, “The problem of social cost”, Journal of Law and Economics, 3 (1960), 1–44 | DOI

[7] O. E. Williamson, Markets and Hierarchies: Analysis and Antitrust Implications, Free Press, McMillan, New York, London, 1975

[8] R. Axelrod, Evolution of Cooperation. Basic Books, New York, 1984

[9] F. V. Fisher, Disequilibrium Foundations of Equilibrium Economics, Cambridge Univ. Press, Cambridge, 1963

[10] A. Wald, “On some systems of equations of mathematical economics”, Econometrica, 19 (1951), 368–403 | DOI | MR | Zbl

[11] G. Debreu, Theory of Value. An Axiomatic Analysis of Economic Equilibrium, Wiley, New York, 1959 | MR | Zbl

[12] K. J. Arrow, G. Debreu,, “Existence of an equilibrium for a competitive economy”, Econometrica, 22 (1954), 265–290 | DOI | MR | Zbl

[13] V. Sergeev, The Limits of Rationality, Phasis, Moscow, 1999

[14] E. Cartan, Lecons sur Les Invariants Integraux, A. Hermann Fils, Paris, 1922 | MR | Zbl

[15] P. K. Rashevsky, Geometrical Theory of Partial Differential Equations, OGIZ, Moscow–Leningrad, 1947 | MR

[16] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl

[17] V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1992 | MR

[18] C. Carathéodory, “Untersuchugen über die Grundlagen der Thermodynamik”, Math. Ann., 67 (1909), 355–386 ; C. Carathéodory, B. II, C. H. Bech'sche Verlagsbuchhandlung, München, 1955 | DOI | MR | MR

[19] M. Born, “Kritische Betrachtungen zur Traditionallen Darstellung der Termodinamik”, Physik Zschr., 22 (1920), 218–224; 249–254; 282–286

[20] Global analysis – studies and applications, I, Lecture Notes Math., 1108, eds. Yu. G. Borisovich, Yu. E. Gliklikh, Springer-Verlag, Berlin–New York, 1984 | MR | MR

[21] L. D. Landau, E. M. Livschitz, Course of Theoretical Physics. V. 5: Statistical Physics, 2nd edition, Pergamon Press, Oxford–Edinburgh–New York, 1968

[22] A. G. Wilson, Entropy in Urban and Regional Modeling, Pion, London, 1970

[23] L. I. Rosenoer, “Exchange and distribution of resourses (generalized thermodynamic approach)”, Avtomatika i Telemekhanika, 1973, no. 5, 115–131

[24] L. I. Rosenoer, A. M. Tsirlin, “Optimal control over thermodynamic processes”, Avtomatika i Telemekhanika, 1983, no. 1, 70–79 | MR

[25] E. T. Jaynes, “Information theory and statistical mechanics”, Phys. Rev., 106:6 (1957), 620–630 | DOI | MR | Zbl

[26] E. T. Jaynes, “Prior information and ambiguity in inverse problems”, SIAM–AMS Proc., 14 (1984), 151–166, Amer. Math. Soc., Providence | MR

[27] R. D. Levine, M. Tribus, “Foreword”, The Maximum Entropy Formalism, Conf., Mass. Inst. Tech. (Cambridge, Mass., 1978), MIT Press, 1979, 7–9 | MR

[28] A. Golan, G. Judge, D. Miller, Maximum Entropy Econometrics: Robust Estimation with Limited Data, Wiley, Chichester, 1996 | Zbl

[29] S. Durlauf, “Nonergodic economic growth”, Rev. Econ. Studies, 60 (1993), 349–366 | DOI | Zbl

[30] S. Durlauf, “A theory of persistant income inequality”, J. Econ. Growth, 1 (1996), 75–93 | DOI | Zbl

[31] P. A. M. Dirac, “The Hamiltonian form of field dynamics”, Canadian J. Physics, 2:1 (1951), 1–23 | MR

[32] L. D. Faddeev, “Feynman integral for singular Lagrangians”, Teor. Matem. Fizika, 1:1 (1969), 3–18 | MR | Zbl

[33] V. P. Pavlov, “Dirac's bracket”, Teor. Matem. Fizika, 92:3 (1992), 451–456 | MR | Zbl

[34] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York, 1964 | MR

[35] M. J. Klein, “Negative absolute temperature”, Phys. Rev., 104:3 (1956), 589 | DOI | Zbl

[36] G. A. Akerloff, An Economic Theorist's Book of Tales: Essays that Entertain the Consequences of New Assumptions in Economic Theory, Cambridge Univ. Press, Cambridge, 1984