Newton–Kantorovich method and its global convergence
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 256-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1948, L. V. Kantorovich extended the Newton method for solving nonlinear equations to functional spaces. This event cannot be overestimated: the Newton–Kantorovich method became a powerful tool in numerical analysis as well as in pure mathematics. We address basic ideas of the method in the historical perspective and focus on some recent applications and extensions of the method and some approaches to overcoming its local nature.
@article{ZNSL_2004_312_a18,
     author = {B. T. Polyak},
     title = {Newton{\textendash}Kantorovich method and its global convergence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {256--274},
     year = {2004},
     volume = {312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/}
}
TY  - JOUR
AU  - B. T. Polyak
TI  - Newton–Kantorovich method and its global convergence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 256
EP  - 274
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/
LA  - en
ID  - ZNSL_2004_312_a18
ER  - 
%0 Journal Article
%A B. T. Polyak
%T Newton–Kantorovich method and its global convergence
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 256-274
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/
%G en
%F ZNSL_2004_312_a18
B. T. Polyak. Newton–Kantorovich method and its global convergence. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 256-274. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/

[1] L. V. Kantorovich, “On Newton's method for functional equations”, Dokl. Akad. Nauk SSSR, 59:7 (1948), 1237–1240 | MR

[2] L. V. Kantorovich, “Functional analysis and applied mathematics”, Uspekhi Mat. Nauk, 3:6 (1948), 89–185 | MR | Zbl

[3] L. V. Kantorovich, “On Newton method”, Trudy Steklov Math. Inst., 28, 1949, 104–144 | MR

[4] L. V. Kantorovich, “Principle of majorants and Newton's method”, Dokl. Akad. Nauk SSSR, 76:1 (1951), 17–20

[5] L. V. Kantorovich, “Some further applications of principle of majorants”, Dokl. Akad. Nauk SSSR, 80:6 (1951), 849–852 | MR

[6] L. V. Kantorovich, “On approximate solution of functional equations”, Uspekhi Mat. Nauk, 11:6 (1956), 99–116 | MR

[7] L. V. Kantorovich, “Some further applications of Newton method”, Vestnik LGU, Ser. Math. Mech., 7 (1957), 68–103 | Zbl

[8] L. V. Kantorovich, G. P. Akilov, Functional Analysis in Normed Spaces, Fizmatgiz, Moscow, 1959 | MR

[9] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 | MR | Zbl

[10] H. Fine, “On Newton's method of approximation”, Proc. Nat. Acad. Sci. USA, 2:9 (1916), 546–552 | DOI | Zbl

[11] A. A. Bennet, “Newton's method in general analysis”, Proc. Nat. Acad. Sci. USA, 2:10 (1916), 592–598 | DOI | Zbl

[12] A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, Basel, 1960 | MR

[13] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl

[14] W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, 1998 | MR | Zbl

[15] P. Deulfhard, Newton Methods for Nonlinear Problems: Affine Invariant and Adaptive Algorithms, Springer, Berlin, 2004 | MR

[16] T. J. Ypma, “Historical development of the Newton–Raphson method”, SIAM Review, 37:4 (1995), 531–551 | DOI | MR | Zbl

[17] J. H. Mathews, Bibliography for Newton's method, http://math.fullerton. edu/mathews/n2003/newtonsearch/NewtonSearchBib/Links/NewtonSearchBib -lnk-2.html

[18] V. I. Arnold, “Small denominators and problem of stability in classical and celestial mechanics”, Uspekhi Mat. Nauk, 18:6 (1963), 91–192 | MR

[19] L. A. Ljusternik, “On conditional extrema of functionals”, Math. Sb., 41:3 (1934), 390–401

[20] A. D. Ioffe, “On the local surjection property”, Nonlinear Analysis: Theory, Methods, and Appl., 11:5 (1987), 565–592 | DOI | MR | Zbl

[21] I. P. Mysovskikh, “On convergence of L. V. Kantorovich's method for functional equations and its applications”, Dokl. Akad. Nauk SSSR, 70:4 (1950), 565–568 | MR

[22] M. A. Krasnoselski, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitski, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka, Moscow, 1969 | MR

[23] L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York, 1966 | MR | Zbl

[24] G. Julia, “Sur l'iteration des fonctions rationelles”, J. Math. Pure Appl., 8 (1918), 47–245 | Zbl

[25] M. Barnsley, Fractals Everywhere, Academic Press, London, 1993 | MR | Zbl

[26] B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983 | MR

[27] J. H. Curry, L. Garnett, D. Sullivan, “On the iteration of a rational function: computer experiments with Newton's method”, Comm. Math. Phys., 91 (1983), 267–277 | DOI | MR | Zbl

[28] H. O. Peitgen, D. Saupe, F. Haeseler, “Cayley's problem and Julia sets”, Math. Intellig., 6:2 (1984), 11–20 | DOI | MR | Zbl

[29] D. E. Joyce, Newton basins, http://www.clarku.edu/departments/mathcs/

[30] R. M. Dickau, Newton's method, http://mathforum.org/advanced/robertd/newnewton.html

[31] K. Levenberg, “A method for the solution of certain nonlinear problems in least squares”, Quart. Appl. Math., 2 (1944), 164–168 | MR | Zbl

[32] D. Marquardt, “An algorithm for least squares estimation of nonlinear parameters”, SIAM J. Appl. Math., 11 (1963), 431–441 | DOI | MR | Zbl

[33] S. Goldfeld, R. Quandt, H. Trotter, “Maximization by quadratic hill climbing”, Econometrica, 34 (1966), 541–551 | DOI | MR | Zbl

[34] A. B. Conn, N. I. M. Gould, Ph. L. Toint, Trust Region Methods, SIAM, Philadelphia, 2000

[35] L. M. Graves, “Some mapping theorems”, Duke Math. J., 17 (1950), 111–114 | DOI | MR | Zbl

[36] B. T. Polyak, “Gradient methods for solving equations and inequalities”, USSR Comp. Math. and Math. Phys., 4:6 (1964), 17–32 | DOI | MR

[37] B. T. Polyak, “Convexity of nonlinear image of a small ball with applications to optimization”, Set-Valued Analysis, 9:1–2 (2001), 159–168 | DOI | MR | Zbl

[38] B. T. Polyak, “The convexity principle and its applications”, Bull. Braz. Math. Soc., 34:1 (2003), 59–75 | DOI | MR | Zbl

[39] B. T. Polyak, “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics Continuous Discrete Impulsive Systems, 11:2–3 (2004), 255–268 | MR

[40] Yu. Nesterov, A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, 1994 | MR | Zbl

[41] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, 2004 | MR

[42] Yu. Nesterov, B. Polyak, “Cubic regularization of a Newton scheme and its global performance”, CORE Discussion Papers, 41 (2003), submitted to Math. Progr

[43] E. S. Levitin, B. T. Polyak, “Constrained minimization methods”, USSR Comp. Math. and Math. Phys., 6:5 (1966), 1–50 | DOI

[44] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987 | MR

[45] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1999 | Zbl

[46] B. T. Polyak, “Iterative methods using Lagrange multipliers for solving extremal problems with equality-type constraints”, USSR Comp. Math. and Math. Phys., 10:5 (1970), 42–52 | DOI | MR

[47] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Method, Academic Press, New York, 1982 | MR | Zbl

[48] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2001 | MR

[49] Yu. Nesterov, Introductory Lectures on Convex Programming, Kluwer, Boston, 2004 | Zbl

[50] L. T. Biegler, I. E. Grossmann, Part I: Retrospective on Optimization, Part II: Future Perspective on Optimization, Preprints, Carnegie-Mellon Univ., Chem. Eng. Dept., 2004 | Zbl

[51] X. Chen, L. Qi, D. Sun, “Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities”, Math. Comput., 67:222 (1998), 519–540 | DOI | MR | Zbl

[52] S. Smale, “A convergent process of price adjustment and global Newton methods”, J. Math. Econom., 3 (1976), 107–120 | DOI | MR | Zbl

[53] A. G. Ramm, “Acceleration of convergence: a continuous analog of the Newton method”, Applic. Anal., 81:4 (2002), 1001–1004 | DOI | MR | Zbl

[54] S. Smale, “Newton's method estimates from data at one point”, Computational mathematics, Springer, New York, 1986, 185–196 | MR

[55] Electronic library ZIB, http://www.zib.de/SciSoft/NewtonLib

[56] S. Smale, “Complexity theory and numerical analysis”, Acta Numerica, 6 (1997), 523–551 | DOI | MR | Zbl