@article{ZNSL_2004_312_a18,
author = {B. T. Polyak},
title = {Newton{\textendash}Kantorovich method and its global convergence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {256--274},
year = {2004},
volume = {312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/}
}
B. T. Polyak. Newton–Kantorovich method and its global convergence. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 256-274. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a18/
[1] L. V. Kantorovich, “On Newton's method for functional equations”, Dokl. Akad. Nauk SSSR, 59:7 (1948), 1237–1240 | MR
[2] L. V. Kantorovich, “Functional analysis and applied mathematics”, Uspekhi Mat. Nauk, 3:6 (1948), 89–185 | MR | Zbl
[3] L. V. Kantorovich, “On Newton method”, Trudy Steklov Math. Inst., 28, 1949, 104–144 | MR
[4] L. V. Kantorovich, “Principle of majorants and Newton's method”, Dokl. Akad. Nauk SSSR, 76:1 (1951), 17–20
[5] L. V. Kantorovich, “Some further applications of principle of majorants”, Dokl. Akad. Nauk SSSR, 80:6 (1951), 849–852 | MR
[6] L. V. Kantorovich, “On approximate solution of functional equations”, Uspekhi Mat. Nauk, 11:6 (1956), 99–116 | MR
[7] L. V. Kantorovich, “Some further applications of Newton method”, Vestnik LGU, Ser. Math. Mech., 7 (1957), 68–103 | Zbl
[8] L. V. Kantorovich, G. P. Akilov, Functional Analysis in Normed Spaces, Fizmatgiz, Moscow, 1959 | MR
[9] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 | MR | Zbl
[10] H. Fine, “On Newton's method of approximation”, Proc. Nat. Acad. Sci. USA, 2:9 (1916), 546–552 | DOI | Zbl
[11] A. A. Bennet, “Newton's method in general analysis”, Proc. Nat. Acad. Sci. USA, 2:10 (1916), 592–598 | DOI | Zbl
[12] A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, Basel, 1960 | MR
[13] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl
[14] W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, 1998 | MR | Zbl
[15] P. Deulfhard, Newton Methods for Nonlinear Problems: Affine Invariant and Adaptive Algorithms, Springer, Berlin, 2004 | MR
[16] T. J. Ypma, “Historical development of the Newton–Raphson method”, SIAM Review, 37:4 (1995), 531–551 | DOI | MR | Zbl
[17] J. H. Mathews, Bibliography for Newton's method, http://math.fullerton. edu/mathews/n2003/newtonsearch/NewtonSearchBib/Links/NewtonSearchBib -lnk-2.html
[18] V. I. Arnold, “Small denominators and problem of stability in classical and celestial mechanics”, Uspekhi Mat. Nauk, 18:6 (1963), 91–192 | MR
[19] L. A. Ljusternik, “On conditional extrema of functionals”, Math. Sb., 41:3 (1934), 390–401
[20] A. D. Ioffe, “On the local surjection property”, Nonlinear Analysis: Theory, Methods, and Appl., 11:5 (1987), 565–592 | DOI | MR | Zbl
[21] I. P. Mysovskikh, “On convergence of L. V. Kantorovich's method for functional equations and its applications”, Dokl. Akad. Nauk SSSR, 70:4 (1950), 565–568 | MR
[22] M. A. Krasnoselski, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitski, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka, Moscow, 1969 | MR
[23] L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York, 1966 | MR | Zbl
[24] G. Julia, “Sur l'iteration des fonctions rationelles”, J. Math. Pure Appl., 8 (1918), 47–245 | Zbl
[25] M. Barnsley, Fractals Everywhere, Academic Press, London, 1993 | MR | Zbl
[26] B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983 | MR
[27] J. H. Curry, L. Garnett, D. Sullivan, “On the iteration of a rational function: computer experiments with Newton's method”, Comm. Math. Phys., 91 (1983), 267–277 | DOI | MR | Zbl
[28] H. O. Peitgen, D. Saupe, F. Haeseler, “Cayley's problem and Julia sets”, Math. Intellig., 6:2 (1984), 11–20 | DOI | MR | Zbl
[29] D. E. Joyce, Newton basins, http://www.clarku.edu/departments/mathcs/
[30] R. M. Dickau, Newton's method, http://mathforum.org/advanced/robertd/newnewton.html
[31] K. Levenberg, “A method for the solution of certain nonlinear problems in least squares”, Quart. Appl. Math., 2 (1944), 164–168 | MR | Zbl
[32] D. Marquardt, “An algorithm for least squares estimation of nonlinear parameters”, SIAM J. Appl. Math., 11 (1963), 431–441 | DOI | MR | Zbl
[33] S. Goldfeld, R. Quandt, H. Trotter, “Maximization by quadratic hill climbing”, Econometrica, 34 (1966), 541–551 | DOI | MR | Zbl
[34] A. B. Conn, N. I. M. Gould, Ph. L. Toint, Trust Region Methods, SIAM, Philadelphia, 2000
[35] L. M. Graves, “Some mapping theorems”, Duke Math. J., 17 (1950), 111–114 | DOI | MR | Zbl
[36] B. T. Polyak, “Gradient methods for solving equations and inequalities”, USSR Comp. Math. and Math. Phys., 4:6 (1964), 17–32 | DOI | MR
[37] B. T. Polyak, “Convexity of nonlinear image of a small ball with applications to optimization”, Set-Valued Analysis, 9:1–2 (2001), 159–168 | DOI | MR | Zbl
[38] B. T. Polyak, “The convexity principle and its applications”, Bull. Braz. Math. Soc., 34:1 (2003), 59–75 | DOI | MR | Zbl
[39] B. T. Polyak, “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics Continuous Discrete Impulsive Systems, 11:2–3 (2004), 255–268 | MR
[40] Yu. Nesterov, A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, 1994 | MR | Zbl
[41] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, 2004 | MR
[42] Yu. Nesterov, B. Polyak, “Cubic regularization of a Newton scheme and its global performance”, CORE Discussion Papers, 41 (2003), submitted to Math. Progr
[43] E. S. Levitin, B. T. Polyak, “Constrained minimization methods”, USSR Comp. Math. and Math. Phys., 6:5 (1966), 1–50 | DOI
[44] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987 | MR
[45] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1999 | Zbl
[46] B. T. Polyak, “Iterative methods using Lagrange multipliers for solving extremal problems with equality-type constraints”, USSR Comp. Math. and Math. Phys., 10:5 (1970), 42–52 | DOI | MR
[47] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Method, Academic Press, New York, 1982 | MR | Zbl
[48] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2001 | MR
[49] Yu. Nesterov, Introductory Lectures on Convex Programming, Kluwer, Boston, 2004 | Zbl
[50] L. T. Biegler, I. E. Grossmann, Part I: Retrospective on Optimization, Part II: Future Perspective on Optimization, Preprints, Carnegie-Mellon Univ., Chem. Eng. Dept., 2004 | Zbl
[51] X. Chen, L. Qi, D. Sun, “Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities”, Math. Comput., 67:222 (1998), 519–540 | DOI | MR | Zbl
[52] S. Smale, “A convergent process of price adjustment and global Newton methods”, J. Math. Econom., 3 (1976), 107–120 | DOI | MR | Zbl
[53] A. G. Ramm, “Acceleration of convergence: a continuous analog of the Newton method”, Applic. Anal., 81:4 (2002), 1001–1004 | DOI | MR | Zbl
[54] S. Smale, “Newton's method estimates from data at one point”, Computational mathematics, Springer, New York, 1986, 185–196 | MR
[55] Electronic library ZIB, http://www.zib.de/SciSoft/NewtonLib
[56] S. Smale, “Complexity theory and numerical analysis”, Acta Numerica, 6 (1997), 523–551 | DOI | MR | Zbl