Equilibrium analysis in Kantorovich spaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 188-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents a survey of new results in general equilibrium theory with linear vector lattice commodity space (Kantorovich space). The importance of order structures and the Riesz–Kantorovich formula is clarified. The main novelty of the paper is new characterizations of fuzzy core elements in an exchange economy. Then these characterizations are applied to prove a new quasi-equilibrium existence theorem for linear vector lattice economy. This theorem, based on E-properness of preferences by Podczeck–Florenzano–Marakulin, develops the Florenzano–Marakulin approach and generalizes previous Tourky's results.
@article{ZNSL_2004_312_a15,
     author = {V. M. Marakulin},
     title = {Equilibrium analysis in {Kantorovich} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--214},
     year = {2004},
     volume = {312},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a15/}
}
TY  - JOUR
AU  - V. M. Marakulin
TI  - Equilibrium analysis in Kantorovich spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 188
EP  - 214
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a15/
LA  - ru
ID  - ZNSL_2004_312_a15
ER  - 
%0 Journal Article
%A V. M. Marakulin
%T Equilibrium analysis in Kantorovich spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 188-214
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a15/
%G ru
%F ZNSL_2004_312_a15
V. M. Marakulin. Equilibrium analysis in Kantorovich spaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 188-214. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a15/

[1] C. D. Aliprantis, “On the Mas-Colell–Richard equilibrium theorem”, J. Econom. Theory, 74 (1997), 414–424 | DOI | MR | Zbl

[2] C. D. Aliprantis, D. J. Brown, “Equilibria in markets with a Riesz space of commodities”, J. Math. Econom., 11 (1983), 189–207 | DOI | MR | Zbl

[3] C. D. Aliprantis, D. J. Brown, O. Burkinshaw, “Edgeworth equilibria”, Econometrica, 55 (1987), 1109–1137 | DOI | MR | Zbl

[4] C. D. Aliprantis, D. J. Brown, O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin–New-York, 1989 | MR | Zbl

[5] C. D. Aliprantis, R. Tourky, N. C. Yannelis, “The Riesz–Kantorovich formula and general equilibrium theory”, J. Math. Econom., 34 (2000), 55–76 | DOI | MR | Zbl

[6] A. Araujo, P. K. Monteiro, “Equilibrium without uniform conditions”, J. Econom. Theory, 48 (1989), 416–427 | DOI | MR | Zbl

[7] K. J. Arrow, G. Debreu, “Existence of equilibrium for a competitive economy”, Econometrica, 22 (1954), 265–290 | DOI | MR | Zbl

[8] T. Bewley, “Existence of equilibria in economies with infinitely many commodities”, J. Econom. Theory, 4 (1972), 514–540 | DOI | MR

[9] G. Debreu, “Existence of competitive equilibrium”, Handbook of Mathematical Economics, Vol. II, eds. K. Arrow, M. D. Intriligator, North-Holland, Amsterdam, 1982, 697–744

[10] G. Debreu, Theory of Value, John Wiley, New York, 1959 | MR | Zbl

[11] M. Deghdak, M. Florenzano, “Decentralizing Edgeworth equilibria in economies with many commodities”, Econom. Theory, 14 (1999), 297–310 | DOI | MR | Zbl

[12] D. Duffie, W. R. Zame, “The consumption based capital asset pricing model”, Econometrica, 57 (1989), 1274–1298 | DOI | MR

[13] M. Florenzano, “Edgeworth equilibria, fuzzy core and equilibria of a production economy without ordered preferences”, J. Math. Anal. Appl., 153 (1990), 18–36 | DOI | MR | Zbl

[14] M. Florenzano, V. M. Marakulin, “Production equilibria in vector lattices”, Econom. Theory, 17:3 (2001), 577–598 | DOI | MR | Zbl

[15] L. Jones, “A competitive model of product differentiation”, Econometrica, 52 (1984), 507–530 | DOI | Zbl

[16] C. Huang, D. Kreps, Intertemporal preferences with a continuous time dimension, Sloan School Working Paper, 1986

[17] D. M. Kreps, “Arbitrage and equilibrium in economies with infinitely many commodities”, J. Math. Econom., 8 (1981), 15–35 | DOI | MR | Zbl

[18] V. M. Marakulin, “Equilibrium in infinite dimensional commodity spaces revisited”, Econom. Theory, 18:3 (2001), 621–633 | DOI | MR | Zbl

[19] A. Mas-Colell, “The price equilibrium existence problem in topological vector lattices”, Econometrica, 54 (1986), 1039–1053 | DOI | MR | Zbl

[20] A. Mas-Colell, “Valuation equilibrium and Pareto optimum revisited”, Contribution to Mathematical Economics, eds. W. Hildenbrand, A. Mas-Colell, North-Holland, New York, 1986 | MR | Zbl

[21] A. Mas-Colell, S. F. Richard, “A new approach to the existence of equilibria in vector lattices”, J. Econom. Theory, 53 (1991), 1–11 | DOI | MR | Zbl

[22] A. Mas-Colell, W. Zame, “Equilibrium theory in infinite dimensional spaces”, Handbook of Mathematical Economics, Vol. IV, eds. W. Hildenbrand, H. Sonnenschein, North-Holland, Amsterdam, 1991, 1835–1898 | MR | Zbl

[23] L. McKenzie, “On equilibrium in Graham's model of world trade and other competitive systems”, Econometrica, 22 (1954), 147–161 | DOI | Zbl

[24] B. Peleg, M. E. Yaari, “Markets with countably many commodities”, Int. Econom. Review, 11 (1970), 369–377 | DOI | Zbl

[25] K. Podczeck, “Equilibria in vector lattices without ordered preferences or uniform properness”, J. Math. Econom., 25 (1996), 465–485 | DOI | MR | Zbl

[26] S. F. Richard, “Production equilibria in vector lattices”, J. Math. Econom., 18 (1989), 41–56 | DOI | MR | Zbl

[27] R. Tourky, “A new approach to the limit theorem on the core of an economy in vector lattices”, J. Econom. Theory, 78 (1998), 321–328 | DOI | MR | Zbl

[28] R. Tourky, “The limit theorem on the core of a production economy in vector lattices with unordered preferences”, Econom. Theory, 14 (1999), 219–226 | DOI | MR | Zbl

[29] N. C. Yannelis, W. R. Zame, “Equilibria in Banach lattices without ordered preferences”, J. Math. Econom., 15 (1986), 85–110 | DOI | MR | Zbl