@article{ZNSL_2004_312_a14,
author = {D. A. Leites},
title = {On computer-aided solving differential equations and stability study of markets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {165--187},
year = {2004},
volume = {312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/}
}
D. A. Leites. On computer-aided solving differential equations and stability study of markets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 165-187. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/
[1] M. Atiyah, A. Borel, G. J. Chaitin, et al., “Responses to: A. Jaffe and F. Quinn, “Theoretical mathematics: toward a cultural synthesis of mathematics and theoretical physics” [Bull. Amer. Math. Soc. 29, No. 1 (1993), 1–13; MR 94h:00007]”, Bull. Amer. Math. Soc., 30:2 (1994), 178–207 | DOI | MR | Zbl
[2] A. Borisov, I. Mamaev, Poisson Structures and Lie Algebras in Hamilton Mechanics, Udmurdsk Univ. Press, 1999 | MR | Zbl
[3] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 ; R. L. Bryant, P. A. Griffiths, D. Grossman, Exterior differential systems and Euler-Lagrange partial differential equations, arXiv: /math.DG/0207039 | MR | Zbl
[4] S. A. Chaplygin, Gas and Fluid Mechanics. Mathematics. General Mechanics, Selected Works. Annotations and commentaries by S. A. Hristianovich, L. V. Kantorovich, Yu. I. Neimark, N. A. Fufaev. Biographical sketch by M. V. Keldysh. Documentary biographical chronology, and complete bibliography of the works of S. A. Chaplygin by N. M. Semenova, Nauka, Moscow, 1976 | MR
[5] V. Dragovic, B. Gajic, “The Wagner curvature tensor in nonholonomic mechanics”, Reg. Chaot. Dyn., 8:1 (2003), 105–124 ; arXiv: /math-ph/0304018 | DOI | MR
[6] S. Singh, Fermat's Last Theorem, Fourth estate, London, 1997
[7] A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, E. S. Sokatchev, Harmonic Superspace, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[8] S. Gindikin, Tales on Physicists and Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1988 ; 3rd expanded edition:, IUM, MCCME, Moscow, 2001 | MR | Zbl
[9] A. Goncharov, “Infinitesimal structures related to hermitian symmetric spaces”, Funktsional. Anal. i Prilozhen., 15:3 (1981), 83–84 ; a detailed version: A. Goncharov, “Generalized conformal structures on manifolds”, Selecta Math. Sov., 6:4 (1987), 307–340 | MR | Zbl | MR | Zbl
[10] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie
[11] P. Grozman, D. Leites, “Supergravities and $N$-extended Minkowski superspaces for any $N$”, Supersymmetries and Quantum Symmetries, Proc. International Conference in memory of V. Ogievetsky (June 1997), Lecture Notes in Physics, 524, eds. J. Wess, E. Ivanov, Springer, 1999, 58–67 | MR
[12] P. Grozman, D. Leites, “Mathematica-aided study of Lie algebras and their cohomology”, From supergravity to ballbearings and magnetic hydrodynamics, The second International Mathematica symposium (Rovaniemi, 1997), eds. V. Keränen et al., 185–192 | MR | Zbl
[13] P. Grozman, D. Leites, SuperLie and challenging computerizable problems (to be) solved with it, Preprint MPIM-2003-39 | MR
[14] P. Grozman, D. Leites, I. Shchepochkina, “The analogs of the Riemann tensor for exceptional structures on supermanifolds”, Fundamental Mathematics Today, Proc. International conference in honor of the 10th Anniversary of the Independent University of Moscow (December 26–29, 2001), eds. S. K. Lando, O. K. Sheinman, IUM, MCCME, Moscow, 2003, 89–109 ; Preprint MPIM-2003-18; http://www.mpim-bonn.mpg.de | MR
[15] H. Hertz, The Principles of Mechanics in New Relation, Dover, New York, 1956 | MR | Zbl
[16] L. V. Kantorovich, S. S. Kutateladze, I. Ya Fet, Leonid Vitalevich Kantorovich: chelovek i uchenyj, SO RAN Geo Publ. House, Novosibirsk, 2002 | Zbl
[17] I. S. Krasilshchik, V. V. Lychagin, A. N. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1, Gordon and Breach Science Publishers, New York, 1986 | MR
[18] V. Kozlov, The Heat Equilibrium after Gibbs and Poincaré, Institute for Computer Research, Moscow–Izhevsk, 2002
[19] D. Leites, “The Riemann tensor for nonholonomic manifolds”, Homology Homotopy Appl., 4:2 (2002), 397–407, part 2 ; ; Workshop on mathematical physics and geometry, ICTP, Repository for lecture notes from the scanned historical archive (Trieste, March 4–15, 1991); arXiv: /math.RT/0202213http://agenda.ictp.trieste.it/agenda/current/fullAgenda.php?ida=a02210 | MR | Zbl
[20] Yu. I. Manin, Georg Cantor and his heritage, arXiv: /math.AG/0209244 | MR
[21] D. Leites, E. Poletaeva, “Supergravities and contact type structures on supermanifolds”, Second International Conference on Algebra (Barnaul, 1991), Contemp. Math., 184, Amer. Math. Soc., Providence, RI, 1995, 267–274 | MR | Zbl
[22] D. Leites, E. Poletaeva, V. Serganova, “On Einstein equations on manifolds and supermanifolds”, J. Nonlinear Math. Physics, 4 (2002), 394–425 ; arXiv: /math.DG/0306209 | DOI | MR | Zbl
[23] D. Leites, V. Serganova, G. Vinel, “Classical superspaces and related structures”, Proc. Intern. Conf. Diff. Geom. Methods in Physics DGM-IXI, Lecture Notes in Phys., 1990, eds. U. Bruzzo et al., Springer, Berlin, 1991, 286–297 | MR
[24] D. Leites, I. Shchepochkina, “How to quantize the antibracket”, Theor. and Math. Physics, 126:3 (2001), 339–369 ; Preprint ESI-875 ; http://www.esi.ac.at | DOI | MR | Zbl
[25] D. Leites, I. Shchepochkina, Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-2003-28
[26] A. Nordmark, H. Essén, “Systems with a preferred spin direction”, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 455, 1999, 933–941 | DOI | MR | Zbl
[27] E. Poletaeva, “Structure functions on the usual and exotic symplectic and periplectic supermanifolds”, Differential Geometric Methods in Theoretical Physics (Rapallo, 1990), Lecture Notes in Phys., 375, eds. C. Bartocci, U. Bruzzo, R. Cianci, Springer, Berlin, 1991, 390–395 | MR
[28] E. Poletaeva, Analogs of Riemannian tensor on supermanifolds, Preprint MPIM-2003-19
[29] I. Shchepochkina, “Exceptional simple infinite dimensional Lie superalgebras”, C. R. Acad. Sci. Bulg., 36:3 (1983), 313–314 | MR | Zbl
[30] I. Shchepochkina, The five exceptional simple Lie superalgebras of vector fields, ; I. Schepochkina, “The five exceptional simple Lie superalgebras of vector fields”, Sov. J. Funct. Analisys, 33:3 (1999); I. Schepochkina, “Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings”, Representation Theory (electronic journal of AMS), 3 (1999), 373–415 arXiv: /hep-th/9702121 | DOI | MR
[31] V. Sergeev, The Wild East: Crime and Lawlessness in Post-Communist Russia, M. E. Sharp, Armonk, NY, 1998
[32] V. Sergeev, The Limits of Rationality (A Thermodynamical Approach to Market Economy), Fasis, Moscow, 1999
[33] S. Sternberg, Lectures on Differential Geometry, 2nd edition, Chelsey, 1985
[34] N. Tanaka, “On infinitesimal automorphisms of Siegel domains”, J. Math. Soc. Japan, 22 (1970), 180–212 ; N. Tanaka, “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8:1 (1979), 23–84 | DOI | MR | Zbl | MR | Zbl
[35] Yu. G. Borisovich, Yu. E. Gliklikh (eds.), “Global Analysis”, Studies and Applications, I, Lecture Notes in Math., 1108, Springer-Verlag, Berlin–New York, 1984, 278–301 | MR | MR
[36] A. M. Vershik, L. D. Faddeev, “Differential geometry and Lagrangian mechanics with constraints”, Dokl. Akad. Nauk SSSR, 202:3 (1972), 555–557 ; Soviet Physics Doklady, 17:1 (1972), 34–36 ; A. M. Vershik, L. D. Faddeev, “Lagrangian mechanics in an invariant form”, Problems of Theoretical Physics, Vol. 2, Leningrad, 1975; Selecta Math. Sov., 1:4 (1981), 339–350 | Zbl
[37] A. Vershik, V. Gershkovich, “Nonholonomic dinamical systems”, Fundamental Trends, VINITI, Moscow, 1987, 5–85 | MR
[38] A. M. Vershik, V. Ya. Gershkovich, “A bundle of nilpotent Lie algebras over a nonholonomic manifold (nilpotentization)”, Zap. Nauchn. Semin. LOMI, 172, 1989, 21–40 | MR
[39] J. Wess, J. Bagger, Supersymmetry and Supergravity, 2nd edition, Princeton Series in Physics, Princeton Univ. Press, Princeton, NJ, 1992 | MR
[40] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras. Progress in differential geometry”, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | MR | Zbl
[41] M. Zhitomirskii, Typical Singularities of Differential $1$-Forms and Pfaffian Equations, Translations of Mathematical Monographs, 113, Amer. Math. Soc., Providence, RI | MR