On computer-aided solving differential equations and stability study of markets
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 165-187

Voir la notice de l'article provenant de la source Math-Net.Ru

For any nonholonomic manifold, i.e., a manifold with nonintegrable distribution, I define an analog of the Riemann curvature tensor and refer to Grozman's package SuperLie with the help of which the tensor had been computed in several cases. Being an analog of the usual curvature tensor this invariant characterizes (in)stability of any nonholonomic dynamical system, in particular, of markets.
@article{ZNSL_2004_312_a14,
     author = {D. A. Leites},
     title = {On computer-aided solving differential equations and stability study of markets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--187},
     publisher = {mathdoc},
     volume = {312},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/}
}
TY  - JOUR
AU  - D. A. Leites
TI  - On computer-aided solving differential equations and stability study of markets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 165
EP  - 187
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/
LA  - en
ID  - ZNSL_2004_312_a14
ER  - 
%0 Journal Article
%A D. A. Leites
%T On computer-aided solving differential equations and stability study of markets
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 165-187
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/
%G en
%F ZNSL_2004_312_a14
D. A. Leites. On computer-aided solving differential equations and stability study of markets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 165-187. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a14/