Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{ X_i,Y_i\}_{i=1,2,\dots }$ be an i.i.d. sequence of bivariate random vectors with $P(Y_1=y)=0$ for all $y$. Put $M_n(j)=\max _{0\le k\le n-j} (X_{k+1}+\dots X_{k+j})I_{k,j},$ where $I_{k,k+j}=I\{Y_{k+1}<\dots denotes the indicator function for the event in the brackets, $1\le j\le n$. Let $L_n$ be the largest $l\le n$, for which $I_{k,k+l}=1$ for some $k=0,1,\dots,n-l$. The strong law of large numbers for “the maximal gain over the longest increasing runs”, i.e. for $M_n(L_n)$ has been recently derived for the case of $X_1$ with a finite moment of the order $3+\varepsilon,\varepsilon>0$. Assuming that $X_1$ has a finite mean we prove for any $a=0,1,\dots$, that the s.l.l.n. for $M_{(L_n-a)}$ is equivalent to ${\mathbf E}X_1^{3+a}I\{X_1>0\}<\infty$. We derive also some new results for the a.s. asymptotics of $L_n$.
@article{ZNSL_2004_311_a9,
author = {A. I. Martikainen},
title = {Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--189},
year = {2004},
volume = {311},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/}
}
A. I. Martikainen. Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/
[1] A. N. Frolov, A. I. Martikainen, J. Steinebach, “Strong laws for the maximal gain over increasing runs”, Statist. Probab. Lett., 50 (2000), 305–312 | DOI | MR | Zbl
[2] A. I. Martikainen, “On the strong law of large numbers for sums over increasing runs”, J. Statist. Planning and Inference, 2004 (to appear) | MR
[3] D. Y. Novak, “Longest runs in a sequence of $m$-dependent random variables”, Probab. Theory Relat. Fields, 91 (1992), 269–281 | DOI | MR | Zbl
[4] D. G. Pittel, “Limiting behaviour of a process of runs”, Ann. Probab., 9 (1981), 119–129 | DOI | MR | Zbl
[5] L. V. Rozovskii, “Nekotorye otsenki dlya veroyatnostei odnostoronnikh bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 30:4 (1985), 800–804 | MR | Zbl