Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{ X_i,Y_i\}_{i=1,2,\dots }$ be an i.i.d. sequence of bivariate random vectors with $P(Y_1=y)=0$ for all $y$. Put $M_n(j)=\max _{0\le k\le n-j} (X_{k+1}+\dots X_{k+j})I_{k,j},$ where $I_{k,k+j}=I\{Y_{k+1}\dots$ denotes the indicator function for the event in the brackets, $1\le j\le n$. Let $L_n$ be the largest $l\le n$, for which $I_{k,k+l}=1$ for some $k=0,1,\dots,n-l$. The strong law of large numbers for “the maximal gain over the longest increasing runs”, i.e. for $M_n(L_n)$ has been recently derived for the case of $X_1$ with a finite moment of the order $3+\varepsilon,\varepsilon>0$. Assuming that $X_1$ has a finite mean we prove for any $a=0,1,\dots$, that the s.l.l.n. for $M_{(L_n-a)}$ is equivalent to ${\mathbf E}X_1^{3+a}I\{X_1>0\}\infty$. We derive also some new results for the a.s. asymptotics of $L_n$.
			
            
            
            
          
        
      @article{ZNSL_2004_311_a9,
     author = {A. I. Martikainen},
     title = {Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--189},
     publisher = {mathdoc},
     volume = {311},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/}
}
                      
                      
                    TY - JOUR AU - A. I. Martikainen TI - Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 179 EP - 189 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/ LA - ru ID - ZNSL_2004_311_a9 ER -
A. I. Martikainen. Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/