Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\{ X_i,Y_i\}_{i=1,2,\dots }$ be an i.i.d. sequence of bivariate random vectors with $P(Y_1=y)=0$ for all $y$. Put $M_n(j)=\max _{0\le k\le n-j} (X_{k+1}+\dots X_{k+j})I_{k,j},$ where $I_{k,k+j}=I\{Y_{k+1}<\dots denotes the indicator function for the event in the brackets, $1\le j\le n$. Let $L_n$ be the largest $l\le n$, for which $I_{k,k+l}=1$ for some $k=0,1,\dots,n-l$. The strong law of large numbers for “the maximal gain over the longest increasing runs”, i.e. for $M_n(L_n)$ has been recently derived for the case of $X_1$ with a finite moment of the order $3+\varepsilon,\varepsilon>0$. Assuming that $X_1$ has a finite mean we prove for any $a=0,1,\dots$, that the s.l.l.n. for $M_{(L_n-a)}$ is equivalent to ${\mathbf E}X_1^{3+a}I\{X_1>0\}<\infty$. We derive also some new results for the a.s. asymptotics of $L_n$.
@article{ZNSL_2004_311_a9,
     author = {A. I. Martikainen},
     title = {Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--189},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/}
}
TY  - JOUR
AU  - A. I. Martikainen
TI  - Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 179
EP  - 189
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/
LA  - ru
ID  - ZNSL_2004_311_a9
ER  - 
%0 Journal Article
%A A. I. Martikainen
%T Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 179-189
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/
%G ru
%F ZNSL_2004_311_a9
A. I. Martikainen. Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 179-189. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a9/

[1] A. N. Frolov, A. I. Martikainen, J. Steinebach, “Strong laws for the maximal gain over increasing runs”, Statist. Probab. Lett., 50 (2000), 305–312 | DOI | MR | Zbl

[2] A. I. Martikainen, “On the strong law of large numbers for sums over increasing runs”, J. Statist. Planning and Inference, 2004 (to appear) | MR

[3] D. Y. Novak, “Longest runs in a sequence of $m$-dependent random variables”, Probab. Theory Relat. Fields, 91 (1992), 269–281 | DOI | MR | Zbl

[4] D. G. Pittel, “Limiting behaviour of a process of runs”, Ann. Probab., 9 (1981), 119–129 | DOI | MR | Zbl

[5] L. V. Rozovskii, “Nekotorye otsenki dlya veroyatnostei odnostoronnikh bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 30:4 (1985), 800–804 | MR | Zbl