Estimation of analytic densities based on censored data
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 147-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the experiment given by $n$ i.i.d. observations having unknown density $f$ analytic on the whole complex plane. One can observe only such observations which belong to a given interval $[a,b]$. We study how the sensoring effects the behavior of risk functions when $n\to \infty$.
@article{ZNSL_2004_311_a7,
     author = {I. A. Ibragimov},
     title = {Estimation of analytic densities based on censored data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--160},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a7/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - Estimation of analytic densities based on censored data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 147
EP  - 160
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a7/
LA  - ru
ID  - ZNSL_2004_311_a7
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T Estimation of analytic densities based on censored data
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 147-160
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a7/
%G ru
%F ZNSL_2004_311_a7
I. A. Ibragimov. Estimation of analytic densities based on censored data. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 147-160. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a7/

[1] S. N. Bernshtein, Ekstremalnye svoistva polinomov, ONTI, M.–L., 1937

[2] R. Gallager, Teoriya informatsii i nadezhnaya svyaz, Sovetskoe radio, M., 1974 | Zbl

[3] I. M. Gelfand, A. M. Yaglom, “O vychisleniii kolichestva informatsii o sluchainoi funktsii, soderzhascheisya v drugoi takoi funktsii”, Uspekhi matem. nauk, 12:1 (1957), 3–52 | MR

[4] I. A. Ibragimov, R. Z. Khasminskii, Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR

[5] I. A. Ibragimov, R. Z. Khasminskii, “Ob otsenke plotnosti raspredeleniya”, Zap. nauchn. semin. LOMI, 98, 1980, 61–85 | MR | Zbl

[6] I. A. Ibragimov, R. Z. Khasminskii, “Ob otsenke plotnosti raspredeleniya prinadlezhaschei odnomu klassu tselykh funktsii”, Teor. veroyatn. i ee primen., 27:3 (1982), 514–524 | MR | Zbl

[7] I. A. Ibragimov, “Ob ekstrapolyatsii tselykh funktsii nablyudaemykh v gaussovskom belom shume”, Ukr. mat. zhurn., 21:3 (2000), 58–69

[8] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[9] R. Hasminskii, I. Ibragimov, “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR

[10] N. N. Chentsov, “Otsenka neizvestnoi plotnosti raspredeleniya po nablyudeniyam”, DAN SSSR, 147:1 (1962), 45–48 | MR | Zbl