On computing of expected volume of random manifold
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 133-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we generalize the Kac integral formula for the expected number of real zeros of a random polynomial to systems of equations.
@article{ZNSL_2004_311_a6,
     author = {D. N. Zaporozhets},
     title = {On computing of expected volume of random manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--146},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
TI  - On computing of expected volume of random manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 133
EP  - 146
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/
LA  - ru
ID  - ZNSL_2004_311_a6
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%T On computing of expected volume of random manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 133-146
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/
%G ru
%F ZNSL_2004_311_a6
D. N. Zaporozhets. On computing of expected volume of random manifold. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 133-146. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/

[1] M. Kac, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl

[2] A. Edelman, E. Kostlan, Bull. Amer. Math. Soc., 32 (1995), 1–37 | DOI | MR | Zbl

[3] L. Santalo, Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl

[4] G.M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 1, FIZMATLIT, M., 2002

[5] D. K. Fadeev, Lektsii po algebre, Lan, SPb., 2002