On computing of expected volume of random manifold
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 133-146
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we generalize the Kac integral formula for the expected number of real zeros of a random polynomial to systems of equations.
@article{ZNSL_2004_311_a6,
author = {D. N. Zaporozhets},
title = {On computing of expected volume of random manifold},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--146},
year = {2004},
volume = {311},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/}
}
D. N. Zaporozhets. On computing of expected volume of random manifold. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 133-146. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a6/
[1] M. Kac, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl
[2] A. Edelman, E. Kostlan, Bull. Amer. Math. Soc., 32 (1995), 1–37 | DOI | MR | Zbl
[3] L. Santalo, Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl
[4] G.M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 1, FIZMATLIT, M., 2002
[5] D. K. Fadeev, Lektsii po algebre, Lan, SPb., 2002