Limit theorems for spectra of positive random matrices under dependence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 92-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study classical ensembles of sample covariance matrices introduced by Wishart. We discuss Stein's method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the Marchenko–Pastur law.
@article{ZNSL_2004_311_a4,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {Limit theorems for spectra of positive random matrices under dependence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--123},
     year = {2004},
     volume = {311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - Limit theorems for spectra of positive random matrices under dependence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 92
EP  - 123
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/
LA  - en
ID  - ZNSL_2004_311_a4
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T Limit theorems for spectra of positive random matrices under dependence
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 92-123
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/
%G en
%F ZNSL_2004_311_a4
F. Götze; A. N. Tikhomirov. Limit theorems for spectra of positive random matrices under dependence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 92-123. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/

[1] Z. D. Bai, “Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices”, Ann. Probab., 21 (1993), 625–648 | DOI | MR | Zbl

[2] Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices: a review”, Statistica Sinica, 9 (1999), 611–661 | MR

[3] B. V. Bronk, Topics in the theory of random matrices, Thesis, Prinseton University, 1964

[4] V. L. Girko, “Asymptotics distribution of the spectrum of random matrices”, Russian Math. Surveys, 44 (1989), 3–36 | DOI | MR | Zbl

[5] F. Götze, A. N. Tikhomirov, “Rate of convergence to the semi-circular law”, Probab. Theory Relat. Fields, 127 (2003), 228–276 | DOI | MR | Zbl

[6] F. Götze, A. N. Tikhomirov, Limit theorems for spectra of random matrices with martingale structure, Preprint 03-018, Bielefeld University, 2003 ; http://www.mathematik.uni-bielefeld.de/fgweb/preserv.html | MR

[7] I. S. Gradstein, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1994

[8] F. Götze, A. N. Tikhomirov, Limit theorems for spectra of random matrices with martingale structure, Preprint 03-018, Bielefeld University, 2003 ; http://www.mathematik.uni-bielefeld.de/fgweb/preserv.html | MR

[9] R. Horn, Ch. Johnson, Matrix analysis, Cambridge University Press, New York, 1991 | MR

[10] A. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur, “On asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37 (1996), 5033–5060 | DOI | MR | Zbl

[11] V. Marchenko, L. Pastur, “The eigenvalue distribution in some ensembles of random matrices”, Math. Sb., 1 (1967), 457–483 | DOI | Zbl

[12] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, San Diego, 1991 | MR | Zbl

[13] L. A. Pastur, M. Shcherbina, “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Stat. Phys., 86 (1997), 109–147 | DOI | MR | Zbl

[14] A. Boutet de Monvel, L. Pastur, M. Shcherbina, “On the statistical mechanics approach to the random matrix theory: the integrated density of states”, J. Stat. Phys., 79 (1995), 585–611 | DOI | MR | Zbl

[15] L. Pastur, “Eigenvalue distribution of random matrices”, Ann. l'Inst. H. Poincare, 64 (1996), 325–337 | MR | Zbl

[16] L. Pastur, “The spectra of random self-adjoint operators”, Russian Math. Surveys, 28 (1973), 1–67 | DOI | MR | Zbl

[17] Norbert Rosenzweig, “Statistical mechanics of equally likely quantum systems”, Statistical Physics, Brandeis Summer Institute, Vol. 3, Benjamin, New York, 1962 | MR

[18] E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl

[19] E. Wigner, “On the distribution of the roots of certain symmetric matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl