@article{ZNSL_2004_311_a4,
author = {F. G\"otze and A. N. Tikhomirov},
title = {Limit theorems for spectra of positive random matrices under dependence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--123},
year = {2004},
volume = {311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/}
}
F. Götze; A. N. Tikhomirov. Limit theorems for spectra of positive random matrices under dependence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 92-123. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a4/
[1] Z. D. Bai, “Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices”, Ann. Probab., 21 (1993), 625–648 | DOI | MR | Zbl
[2] Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices: a review”, Statistica Sinica, 9 (1999), 611–661 | MR
[3] B. V. Bronk, Topics in the theory of random matrices, Thesis, Prinseton University, 1964
[4] V. L. Girko, “Asymptotics distribution of the spectrum of random matrices”, Russian Math. Surveys, 44 (1989), 3–36 | DOI | MR | Zbl
[5] F. Götze, A. N. Tikhomirov, “Rate of convergence to the semi-circular law”, Probab. Theory Relat. Fields, 127 (2003), 228–276 | DOI | MR | Zbl
[6] F. Götze, A. N. Tikhomirov, Limit theorems for spectra of random matrices with martingale structure, Preprint 03-018, Bielefeld University, 2003 ; http://www.mathematik.uni-bielefeld.de/fgweb/preserv.html | MR
[7] I. S. Gradstein, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1994
[8] F. Götze, A. N. Tikhomirov, Limit theorems for spectra of random matrices with martingale structure, Preprint 03-018, Bielefeld University, 2003 ; http://www.mathematik.uni-bielefeld.de/fgweb/preserv.html | MR
[9] R. Horn, Ch. Johnson, Matrix analysis, Cambridge University Press, New York, 1991 | MR
[10] A. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur, “On asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37 (1996), 5033–5060 | DOI | MR | Zbl
[11] V. Marchenko, L. Pastur, “The eigenvalue distribution in some ensembles of random matrices”, Math. Sb., 1 (1967), 457–483 | DOI | Zbl
[12] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, San Diego, 1991 | MR | Zbl
[13] L. A. Pastur, M. Shcherbina, “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Stat. Phys., 86 (1997), 109–147 | DOI | MR | Zbl
[14] A. Boutet de Monvel, L. Pastur, M. Shcherbina, “On the statistical mechanics approach to the random matrix theory: the integrated density of states”, J. Stat. Phys., 79 (1995), 585–611 | DOI | MR | Zbl
[15] L. Pastur, “Eigenvalue distribution of random matrices”, Ann. l'Inst. H. Poincare, 64 (1996), 325–337 | MR | Zbl
[16] L. Pastur, “The spectra of random self-adjoint operators”, Russian Math. Surveys, 28 (1973), 1–67 | DOI | MR | Zbl
[17] Norbert Rosenzweig, “Statistical mechanics of equally likely quantum systems”, Statistical Physics, Brandeis Summer Institute, Vol. 3, Benjamin, New York, 1962 | MR
[18] E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl
[19] E. Wigner, “On the distribution of the roots of certain symmetric matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl