On diffusion processes corresponding to hypergeometric equation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 79-91
Cet article a éte moissonné depuis la source Math-Net.Ru
Two integral functionals of special type are considered. The characteristics, such as scale, speed density, Green function and transition density function for diffusion processes corresponding to hypergeometric equation are investigated.
@article{ZNSL_2004_311_a3,
author = {I. V. Vagurina},
title = {On diffusion processes corresponding to hypergeometric equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--91},
year = {2004},
volume = {311},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a3/}
}
I. V. Vagurina. On diffusion processes corresponding to hypergeometric equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 79-91. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a3/
[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Izdatelstvo inostrannoi literatury, Moskva, 1951 | MR
[2] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, Moskva, 1979 | MR
[3] A. N. Borodin, I. A. Ibragimov, Predelnye teoremy dlya sluchainykh bluzhdanii, Trudy Matematicheskogo in-ta im. V. A. Steklova RAN, 195, Nauka, S.–Peterburg, 1994 | MR | Zbl
[4] A. N. Borodin, P. Salminen, Handbook of Brownian Motion – Facts and Formulae, Second Edition, Birkhäuser, Basel-Boston-Berlin, 2002 | MR | Zbl
[5] A. V. Liber, V. A. Smirnova, “O raspredelenii funktsionalov ot brounovskogo dvizheniya s lineinym snosom”, Zap. nauchn. semin. POMI., 244, 1997, 205–217 | MR | Zbl