On some exponential integral functionals of BM($\mu$) and BES(3)
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 51-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we derive the Laplace transforms of the integral functionals 
$$
\int_0^\infty 
\left(p\left(\exp(B^{(\mu)}_t)+1\right)^{-1}+q\left(\exp(B^{(\mu)}_t)+1\right)^{-2}\right)\,dt,
$$
and
$$
\int_0^\infty 
\left(p\left(\exp(R^{(3)}_t)-1\right)^{-1}+q\left(\exp(R^{(3)}_t)-1\right)^{-2}\right)\,dt,
$$
where $p$ and $q$ are real numbers, $\{B^{(\mu)}_t:\ t\geqslant0\}$ 
is a Brownian motion with drift $\mu>0$, BM($\mu$), and $\{R^{(3)}_t\:t\geq 0\}$ is a $3$-dimensional Bessel process, BES(3). The transforms are given in terms of Gauss' hypergeometric functions and it is seen that the results are closely related to some ones for functionals of Jacobi diffusions. This work generalizes and
completes some results of Donati–Martin and Yor [4] and Salminen and Yor [11].
			
            
            
            
          
        
      @article{ZNSL_2004_311_a2,
     author = {A. N. Borodin and P. Salminen},
     title = {On some exponential integral functionals of {BM(}$\mu$) and {BES(3)}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--78},
     publisher = {mathdoc},
     volume = {311},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a2/}
}
                      
                      
                    A. N. Borodin; P. Salminen. On some exponential integral functionals of BM($\mu$) and BES(3). Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 51-78. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a2/