@article{ZNSL_2004_311_a15,
author = {A. N. Frolov},
title = {Strong limit theorems for increments of sums of independent random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {260--285},
year = {2004},
volume = {311},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a15/}
}
A. N. Frolov. Strong limit theorems for increments of sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 260-285. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a15/
[1] P. Erdős, A. Rényi, “On a new law of large numbers”, J. Anal. Math., 23 (1970), 103–111 | DOI | MR | Zbl
[2] L. A. Shepp, “A limit law concerning moving averages”, Ann. Math. Statist., 35 (1964), 424–428 | DOI | MR | Zbl
[3] S. Csörgő, “Erdős–Rényi laws”, Ann. Statist., 7 (1979), 772–787 | DOI | MR
[4] D. M. Mason, “An extended version of the Erdős–Rényi strong law of large numbers”, Ann. Probab., 17 (1989), 257–265 | DOI | MR | Zbl
[5] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Budapest, 1981 | MR | Zbl
[6] N. M. Zinchenko, “Asimptotika priraschenii ustoichivykh sluchainykh protsessov so skachkami odnogo znaka”, Teoriya veroyatn. i ee primen., 32:4 (1987), 793–796 | MR
[7] A. N. Frolov, “On one-sided strong laws for large increments of sums”, Statist. Probab. Lett., 37 (1998), 155–165 | DOI | MR | Zbl
[8] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, DAN, 372:5 (2000), 596–599 | MR | Zbl
[9] A. N. Frolov, “On one-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39 (2002), 333–359 | MR | Zbl
[10] A. N. Frolov, “Predelnye teoremy dlya priraschenii summ nezavisimykh sluchainykh velichin”, Teor. veroyatn. i ee primen., 48:1 (2003), 104–121 | MR | Zbl
[11] S. A. Book, “A version of the Erdős–Rényi law of large numbers for independent random variables”, Bull. Inst. Math. Acad. Sinica, 3:2 (1975), 199–211 | MR | Zbl
[12] S. A. Book, “Large deviation probabilities and the Erdös–Rényi law of large numbers”, Canad. J. Statist., 4 (1976), 185–210 | DOI | MR | Zbl
[13] Z. Y. Lin, “The Erdős–Rényi laws of large numbers for nonidentically distributed random variables”, Chin. Ann. Math., 11 (1990), 376–383 | MR | Zbl
[14] Z. Y. Lin, C. R. Lu, Q. M. Shao, “Contribution to the limit theorems”, Contemporary Math., 118 (1991), 221–237 | MR | Zbl
[15] D. L. Hanson, R. P. Russo, “Some limit results for lag sums of independent, non-i.i.d. random variables”, Z. Wahrsch. Verw. Geb., 68 (1985), 425–445 | DOI | MR | Zbl
[16] A. N. Frolov, “O zakone bolshikh chisel Erdesha–Reni pri narushenii usloviya Kramera dlya nezavisimykh neodinakovo raspredelennykh sluchainykh velichin”, Vestn. LGU, 8 (1991), 57–61
[17] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, Vestn. SPbGU, 22 (1993), 45–48
[18] A. N. Frolov, A. I. Martikainen, J. Steinebach, “Erdős–Rényi–Shepp type laws in noni.i.d. case”, Studia Sci. Math. Hungar., 33 (1997), 127–151 | MR | Zbl
[19] Z. Cai, “Strong approximation and improved Erdős–Rényi laws for sums of independent nonidentically distributed random variables”, J. Hangzhou Univ., 19:3 (1992), 240–246 | MR | Zbl
[20] A. N. Frolov, “Ob asimptoticheskom povedenii bolshikh priraschenii summ nezavisimykh sluchainykh velichin”, Teor. veroyatn. i ee primenen., 47:2 (2002), 366–374 | MR | Zbl
[21] A. N. Frolov, “On asymptotics of large increments of sums in non-i.i.d. case”, Acta Applicandae Mathematicae, 78 (2003), 129–136 | DOI | MR | Zbl
[22] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR
[23] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983 | MR
[24] A. N. Frolov, “O zakone bolshikh chisel Erdesha–Reni dlya protsessov vosstanovleniya”, Teor. veroyatn. i matem. stat., 68 (2003), 142–151 | MR | Zbl
[25] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Predelnye teoremy dlya summ sluchainykh velichin, Tr. in–ta matematiki Sib. otd. AN SSSR, 3, 1984, 4–49 | MR | Zbl
[26] W. Feller, “Limit theorems for probabilities of large deviations”, Z. Wahrsch. Verw. Geb., 14 (1969), 1–20 | DOI | MR | Zbl