Strong limit theorems for increments of sums of independent random variables
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 260-285
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We derive universal strong laws for increments of sums of independent nonidentically distributed random variables. These results generalize universal results of the author for i.i.d. case which include the strong law of large numbers, the law of the iterated logarithm, the Erdős–Rényi law and the Csörgő–Révész laws.
			
            
            
            
          
        
      @article{ZNSL_2004_311_a15,
     author = {A. N. Frolov},
     title = {Strong limit theorems for increments of sums of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {260--285},
     publisher = {mathdoc},
     volume = {311},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a15/}
}
                      
                      
                    A. N. Frolov. Strong limit theorems for increments of sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 260-285. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a15/