Sharp small deviation asymptotics in $L_2-$norm for a~class of Gaussian processes
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 214-221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find the exact behavior of small deviations in Hilbert norm for centered Gaussian processes when their covariances have a special form of eigenvalues. This enables to describe small deviation asymptotics for certain particular Gaussian processes.
			
            
            
            
          
        
      @article{ZNSL_2004_311_a11,
     author = {Ya. Yu. Nikitin and P. A. Kharinski},
     title = {Sharp small deviation asymptotics in $L_2-$norm for a~class of {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--221},
     publisher = {mathdoc},
     volume = {311},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/}
}
                      
                      
                    TY - JOUR AU - Ya. Yu. Nikitin AU - P. A. Kharinski TI - Sharp small deviation asymptotics in $L_2-$norm for a~class of Gaussian processes JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 214 EP - 221 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/ LA - ru ID - ZNSL_2004_311_a11 ER -
Ya. Yu. Nikitin; P. A. Kharinski. Sharp small deviation asymptotics in $L_2-$norm for a~class of Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 214-221. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/