Sharp small deviation asymptotics in $L_2-$norm for a class of Gaussian processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 214-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find the exact behavior of small deviations in Hilbert norm for centered Gaussian processes when their covariances have a special form of eigenvalues. This enables to describe small deviation asymptotics for certain particular Gaussian processes.
@article{ZNSL_2004_311_a11,
     author = {Ya. Yu. Nikitin and P. A. Kharinski},
     title = {Sharp small deviation asymptotics in $L_2-$norm for a~class of {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--221},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
AU  - P. A. Kharinski
TI  - Sharp small deviation asymptotics in $L_2-$norm for a class of Gaussian processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 214
EP  - 221
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/
LA  - ru
ID  - ZNSL_2004_311_a11
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%A P. A. Kharinski
%T Sharp small deviation asymptotics in $L_2-$norm for a class of Gaussian processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 214-221
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/
%G ru
%F ZNSL_2004_311_a11
Ya. Yu. Nikitin; P. A. Kharinski. Sharp small deviation asymptotics in $L_2-$norm for a class of Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 214-221. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a11/

[1] V. M. Zolotarev, “Asimptoticheskoe povedenie gaussovskoi mery v $l_2$”, Problemy ustoichivosti stokhasticheskikh modelei. Trudy seminara, M., 1984, 54–58 | MR | Zbl

[2] I. A. Ibragimov, “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. nauchn. semin. LOMI, 85, 1979, 75–93 | MR | Zbl

[3] A. I. Nazarov, “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Nelineinye uravneniya i matematicheskii analiz, Problemy matem. analiza, 26, T. Rozhovskaya, Novosibirsk, 2003, 179–214

[4] G. N. Sytaya, “O nekotorykh asimptoticheskikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, v. 2, Kiev, 1974, 93–104

[5] R. Adler, An introduction to continuity, extrema and related topics for general Gaussian processes, IMS Lect. Notes, Monograph Series, 12, Institute of Mathematical Statistics, Hayward, California, 1990 | MR | Zbl

[6] L. Beghin, Ya. Yu. Nikitin, E. Orsingher, “Exact small ball constants for some Gaussian processes under the $L^2$-norm”, Zap. nauchn. semin. POMI, 298, 2003, 5–21 | Zbl

[7] P. Deheuvels, G. Martynov, “Karhunen–Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions”, Progress in Probab., 55 (2003), 57–93, Birkhäuser | MR

[8] P. Deheuvels, G. Martynov, “Tests of independence with exponential marginals”, Proceedings of the Conference on Goodness-of-fit, Birkhäuser, 2004 (to appear)

[9] R. M. Dudley, J. Hoffmann-Jørgensen, L. A. Shepp, “On the lower tail of Gaussian seminorms”, Ann. Prob., 7 (1979), 319–342 | DOI | MR | Zbl

[10] T. Dunker, M. A. Lifshits, W. Linde, “Small deviations of sums of independent variables”, Proc. Conf. High Dimensional Probability, Ser. Progress in Probability, 43, Birkhäuser, 1998, 59–74 | MR | Zbl

[11] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, Comparison theorems for small deviations of random series, Preprint, 2003 | MR

[12] F. Gao, J. Hannig, F. Torcaso, “Integrated Brownian motions and exact $L_2$-small balls”, Ann. Prob., 31 (2003), 1320–1337 | DOI | MR | Zbl

[13] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Laplace transforms via Hadamard Factorization with applications to small ball probabilities”, Electr. J. Prob., 8:13 (2003), 1–20 | MR

[14] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theor. Prob., 5 (1992), 1–31 | DOI | MR

[15] W. V. Li, Q. M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[16] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Prob. Theory and Math. Stat., eds. B. Grigelionis et al., VSP/TEV, 1999, 453–468

[17] A. I. Nazarov, Ya. Yu. Nikitin, “Exact small ball behavior of integrated Gaussian processes under $L^2$-norm and spectral asymptotics of boundary value problems”, Probab. Theory Rel. Fields, 2004 (to appear)

[18] J.-R. Pycke, “Multivariate extension of the Anderson–Darling process”, Statist. Prob. Lett., 63 (2003), 387–399 | DOI | MR | Zbl

[19] J. B. Pycke, Un lien entre le développement de Karhunen–Loève de certains processus gaussiens et le laplacien dans les espaces de Riemann, Thèse de doctorat. Université Paris 6, 2003

[20] V. M. Zolotarev, “Gaussian measure asymptotics in $l_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians, Varna, 1979, 254