Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 190-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find the logarithmic small ball asymptotics for the $L_2$-norm with respect to self-similar measures of a certain class of Gaussian processes including Brownian motion, Ornstein–Uhlenbeck process and their integrated counterparts.
@article{ZNSL_2004_311_a10,
     author = {A. I. Nazarov},
     title = {Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--213},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a10/}
}
TY  - JOUR
AU  - A. I. Nazarov
TI  - Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 190
EP  - 213
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a10/
LA  - ru
ID  - ZNSL_2004_311_a10
ER  - 
%0 Journal Article
%A A. I. Nazarov
%T Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 190-213
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a10/
%G ru
%F ZNSL_2004_311_a10
A. I. Nazarov. Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 190-213. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a10/

[1] M. S. Birman, M. Z. Solomyak, “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR, matem., 34:5 (1970), 1142–1158 | MR | Zbl

[2] M. S. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izdatelstvo LGU, 1980 | MR

[3] M. S. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matematicheskaya shkola, eds. Yu. A. Mitropolskii, A. F. Shestopal, 1974, 5–189 | MR

[4] M. Sh. Birman, M. Solomyak, “On the negative discrete spectrum of the periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential”, J. d'Analyse Math., 83 (2001), 337–391 | DOI | MR | Zbl

[5] V. V. Borzov, “O kolichestvennykh kharakteristikakh singulyarnykh mer”, Problemy matem. fiziki, 4 (1970), 42–47 | MR | Zbl

[6] A. N. Borodin, P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Birkhäuser, Basel, 1996 | MR | Zbl

[7] E. Csáki, “On small values of the square integral of a multiparameter Wiener process”, Statistics and Probability, Proc. of the 3rd Pannonian Symp. on Math. Stat., D. Reidel, Boston, 1982, 19–26 | MR

[8] R. M. Dudley, J. Hoffmann-Jørgensen, L. A. Shepp, “On the lower tail of Gaussian seminorms”, Ann. Prob., 7 (1979), 319–342 | DOI | MR | Zbl

[9] T. Dunker, A. M. Lifshits, W. Linde, “Small deviations of sums of independent variables”, Proc. Conf. High Dimensional Probability, Ser. Progress in Probability, 43, Birkhäuser, 1998, 59–74 | MR | Zbl

[10] V. R. Fatalov, “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi mat. nauk, 58:4 (2003), 89–134 | MR | Zbl

[11] T. Fujita, “A fractional dimension, self-similarity and a generalized diffusion operator”, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, 83–90 | MR

[12] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Exact $L^2$ small balls of Gaussian processes”, J. of Theor.Prob. (to appear)

[13] F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Laplace transforms via Hadamard factorization with applications to small ball probabilities”, Electronic J. Prob., 8:13 (2003), 1–20 | MR

[14] I. Hong, T. Uno, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japanese Journ. of Math., 29 (1959), 152–164 | MR | Zbl

[15] J. E. Hutchinson, “Fractals and Self Similarity”, Indiana Univ. Math. Journ., 30:5 (1981), 713–747 | DOI | MR | Zbl

[16] I. A. Ibragimov, “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. nauchn. semin. LOMI, 85, 1979, 75–93 | MR | Zbl

[17] A. I. Karol', A. I. Nazarov, Ya. Yu. Nikitin, Tensor products of compact operators and logarithmic $L_2$-small ball asymptotics for Gaussian random fields, Preprint. Studi Stat. No 74. Ist. di Metodi Quantit., Università “L. Bocconi”, Milano, 2003

[18] A. Lachal, “Bridges of certain Wiener integrals. Prediction properties, relation with polynomial interpolation and differential equations. Application to goodness-of-fit testing”, Bolyai Math. Studies X, Limit Theorems (Balatonlelle, Hungary, 1999), Budapest, 2002, 1–51 | MR

[19] M. Levitin, D. Vassiliev, “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc., 72 (1996), 188–214 | DOI | MR | Zbl

[20] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, Journ. Theor. Prob., 5:1 (1992), 1–31 | DOI | MR

[21] W. V. Li, Q. M. Shao, “Gaussian processes: Inequalities, Small Ball Probabilities and Applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[22] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Prob. Theory and Math. Stat., eds. B. Grigelionis et al., VSP/TEV, 1999, 453–468

[23] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Prob., 25:1 (1997), 424–442 | DOI | MR | Zbl

[24] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian Motion”, Memoirs of Amer. Math. Soc., 745, 2002, 1–87 | MR

[25] M. A. Lifshits, W. Linde, “Small deviations of weighted fractional processes and average non-linear approximation”, Trans. Amer. Math. Soc., 357:5 (2005), 2059–2079 (electronic) | DOI | MR | Zbl

[26] M. A. Lifshits, Th. Simon, “Small deviations for fractional stable processes”, Ann. Inst. H. Poincaré Probab. Statist., 41:4 (2005), 725–752 | DOI | MR | Zbl

[27] W. Linde, Kolmogorov numbers of Riemann-Liouville operators over small sets and applications to Gaussian processes, Preprint, 2003 | MR

[28] H. P. McKean, D. B. Ray, “Spectral distribution of a differential operator”, Duke Math. Journ., 29 (1962), 281–292 | DOI | MR | Zbl

[29] A. I. Nazarov, “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov. Nelineinye uravneniya i matematicheskii analiz”, Problemy matematicheskogo analiza, 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214

[30] A. I. Nazarov, Ya. Yu. Nikitin, “Exact small ball behavior of integrated Gaussian processes under $L_2$-norm and spectral asymptotics of boundary value problems”, Probab. Theory and Related Fields, 129:4 (2004), 469–494 | MR | Zbl

[31] A. I. Nazarov, Ya. Yu. Nikitin, “Logarifmicheskaya asimptotika malykh uklonenii v $L_2$-norme dlya nekotorykh drobnykh gaussovskikh protsessov” (to appear)

[32] Ya. Yu. Nikitin, E. Orsingher, “The intermediate arc-sine law”, Statistics and Probability Letters, 49 (2000), 119–125 | DOI | MR | Zbl

[33] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[34] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[35] D. Slepian, “First passage time for a particular Gaussian process”, Ann. Math. Stat., 32 (1961), 610–612 | DOI | MR | Zbl

[36] L. Shepp, “First-passage time for a partiucular Gaussian process”, Ann. Math. Stat., 42 (1971), 946–951 | DOI | MR | Zbl

[37] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27 (1995), 242–248 | DOI | MR | Zbl

[38] R. S. Strichartz, “Self-similar measures and their Fourier transform-I”, Indiana Univ. Math. J., 39 (1990), 797–817 | DOI | MR | Zbl

[39] G. N. Sytaya, “O nekotorykh asimptoticheskikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 2 (1974), 93–104

[40] A. A. Vladimirov, I. A. Sheipak, Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym vesom, http://arXiv.org/math.FA/0405410

[41] A. A. Vladimirov, I. A. Sheipak, “Osobennosti uslovii Neimana v zadache Shturma–Liuvillya s singulyarnym vesom”, Diff. Eqs. and Rel. Topics, Int. Conf. Book of abstracts (Moscow, May 2004), 238 | Zbl

[42] H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl

[43] V. M. Zolotarev, “Gaussian measure asymptotic in $l_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians, Varna, 1979, 254

[44] V. M. Zolotarev, “Asimptoticheskoe povedenie gaussovskoi mery v $l_2$”, Problemy ustoichivosti stokhasticheskikh modelei, Moskva, 1984, 54–58 | MR | Zbl