Without-replacement samples: discrete analogs of some continuous distributions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 40-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some characterizations of distributions based on regressional properties of order statistics are obtained for random sampling without replacement.
@article{ZNSL_2004_311_a1,
     author = {A. Berred and V. B. Nevzorov},
     title = {Without-replacement samples: discrete analogs of some continuous distributions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--50},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a1/}
}
TY  - JOUR
AU  - A. Berred
AU  - V. B. Nevzorov
TI  - Without-replacement samples: discrete analogs of some continuous distributions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 40
EP  - 50
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a1/
LA  - ru
ID  - ZNSL_2004_311_a1
ER  - 
%0 Journal Article
%A A. Berred
%A V. B. Nevzorov
%T Without-replacement samples: discrete analogs of some continuous distributions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 40-50
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a1/
%G ru
%F ZNSL_2004_311_a1
A. Berred; V. B. Nevzorov. Without-replacement samples: discrete analogs of some continuous distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 40-50. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a1/

[1] V. B. Nevzorov, Rekordy. Matematicheskaya teoriya, Fazis, M., 2000 | MR | Zbl

[2] V. B. Nevzorov, “Ob odnom svoistve raspredeleniya Styudenta s dvumya stepenyami svobody”, Zap. nauchn. semin. POMI, 294, 2002, 148–157 | MR | Zbl

[3] B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A first course in order statistics, Wiley, NY, 1992 | MR

[4] T. S. Ferguson, “On characterizing distributions by properties of order statistics”, Sankhya, Ser. A, 29 (1967), 265–278 | MR | Zbl