Generalized solutions of nonlinear parabolic systems and vanishing viscosity method
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 7-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct stochastic processes associated with nonlinear parablic equations and systems that allow to derive a probabilistic representation of a generalized solution to the Cauchy problem for them. We show also that in some cases the derived representation can be used to construct and investigate a smooth solution to the Cauchy problem for a hyperbolic system within the framework of the vanishing viscosity method.
@article{ZNSL_2004_311_a0,
     author = {Ya. I. Belopol'skaya},
     title = {Generalized solutions of nonlinear parabolic systems and vanishing viscosity method},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--39},
     publisher = {mathdoc},
     volume = {311},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Generalized solutions of nonlinear parabolic systems and vanishing viscosity method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 7
EP  - 39
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a0/
LA  - ru
ID  - ZNSL_2004_311_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Generalized solutions of nonlinear parabolic systems and vanishing viscosity method
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 7-39
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a0/
%G ru
%F ZNSL_2004_311_a0
Ya. I. Belopol'skaya. Generalized solutions of nonlinear parabolic systems and vanishing viscosity method. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 7-39. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a0/