Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Zapiski Nauchnykh Seminarov POMI
Tome 311 (2004)
Précédent
Suivant
Probability and statistics. Part 7
Sommaire
Generalized solutions of nonlinear parabolic systems and vanishing viscosity method
Ya. I. Belopol'skaya
p. 7-39
Without-replacement samples: discrete analogs of some continuous distributions
A. Berred
;
V. B. Nevzorov
p. 40-50
On some exponential integral functionals of BM(
$\mu$
) and BES(3)
A. N. Borodin
;
P. Salminen
p. 51-78
On diffusion processes corresponding to hypergeometric equation
I. V. Vagurina
p. 79-91
Limit theorems for spectra of positive random matrices under dependence
F. Götze
;
A. N. Tikhomirov
p. 92-123
A~note on the martingale approximation method in proving the central limit theorem for stationary random sequences
M. I. Gordin
p. 124-132
On computing of expected volume of random manifold
D. N. Zaporozhets
p. 133-146
Estimation of analytic densities based on censored data
I. A. Ibragimov
p. 147-160
Aggregation in one-dimensional gas model with stable initial data
L. V. Kuoza
;
M. A. Lifshits
p. 161-178
Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
A. I. Martikainen
p. 179-189
Logarithmic
$L_2$
-small ball asymptotics with respect to self-similar measure for some Gaussian processes
A. I. Nazarov
p. 190-213
Sharp small deviation asymptotics in
$L_2-$
norm for a~class of Gaussian processes
Ya. Yu. Nikitin
;
P. A. Kharinski
p. 214-221
A~chi-squared test for power generalized weibull family for the head-and-neck cancer censored data
F. Haghighi
;
M. Nikulin
p. 222-236
On the growth of sums of non-negative random variables
V. V. Petrov
p. 237-241
Sums of independent random variables with finite variances~-- moderate deviations and nonuniform bounds in the CLT
L. V. Rozovskii
p. 242-259
Strong limit theorems for increments of sums of independent random variables
A. N. Frolov
p. 260-285
Inverse process with independent positive increments: finite-dimensional distributions
B. P. Harlamov
p. 286-297