Young measures as measurable functions and applications to variational problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 191-212

Voir la notice de l'article provenant de la source Math-Net.Ru

It is given a systematic approach to the theory of Young measures based on the characterisation of these objects as measurable functions with values of a compact metric space with metric having an integral form. The advantages of this approach to the investigation of the behaviour of integral functionals on weakly convergin sequences are explained.
@article{ZNSL_2004_310_a9,
     author = {M. A. Sychev},
     title = {Young measures as measurable functions and applications to variational problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--212},
     publisher = {mathdoc},
     volume = {310},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a9/}
}
TY  - JOUR
AU  - M. A. Sychev
TI  - Young measures as measurable functions and applications to variational problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 191
EP  - 212
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a9/
LA  - ru
ID  - ZNSL_2004_310_a9
ER  - 
%0 Journal Article
%A M. A. Sychev
%T Young measures as measurable functions and applications to variational problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 191-212
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a9/
%G ru
%F ZNSL_2004_310_a9
M. A. Sychev. Young measures as measurable functions and applications to variational problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 191-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a9/