Boundary partial regularity for the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 158-190

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two conditions of local Hölder continuity for suitable weak solutions to the Navier–Stokes equations near the smooth curved part of the boundary of a domain. One of these condition has the form of the Caffarelli–Kohn–Nirenberg condition for the local boundedness of suitable weak solutions at the interior points of the space-time cylinder. The corresponding results near the plane part of the boundary were established earlier by G. Seregin.
@article{ZNSL_2004_310_a8,
     author = {G. A. Seregin and T. N. Shilkin and V. A. Solonnikov},
     title = {Boundary partial regularity for the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--190},
     publisher = {mathdoc},
     volume = {310},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
AU  - T. N. Shilkin
AU  - V. A. Solonnikov
TI  - Boundary partial regularity for the Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 158
EP  - 190
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/
LA  - en
ID  - ZNSL_2004_310_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%A T. N. Shilkin
%A V. A. Solonnikov
%T Boundary partial regularity for the Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 158-190
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/
%G en
%F ZNSL_2004_310_a8
G. A. Seregin; T. N. Shilkin; V. A. Solonnikov. Boundary partial regularity for the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 158-190. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/