@article{ZNSL_2004_310_a8,
author = {G. A. Seregin and T. N. Shilkin and V. A. Solonnikov},
title = {Boundary partial regularity for the {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--190},
year = {2004},
volume = {310},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/}
}
G. A. Seregin; T. N. Shilkin; V. A. Solonnikov. Boundary partial regularity for the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 158-190. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/
[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 | MR | Zbl
[2] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[3] H. J. Choe, J. L. Lewis, “On the singular set in the Navier–Stokes equations”, J. Funct. Anal., 175:2 (2000), 348–369 | DOI | MR | Zbl
[4] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Usp. Mat. Nauk, 58:2 (2003), 3–44. | MR
[5] R. Farwig, H. Sohr, “The stationary and nonstationary Stokes system in exterior domains with nonzero divergence and nonzero boundary data”, Math. Meth. Appl. Sci., 17 (1994), 269–291 | DOI | MR | Zbl
[6] Y. Giga, H. Sohr, “Abstract $L^p$-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains”, J. Funct. Anal., 102 (1991), 72–94 | DOI | MR | Zbl
[7] E. Hopf, “Über die Anfangswertaufgabe fur die hydrodynamischen Gründgleichungen”, Math. Nachr., 4 (1950), 213–231 | MR
[8] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid, 2nd rev. aug. ed., Nauka, Moscow, 1970
[9] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Mathematical Fluid Mechanics, 1 (1999), 356–387 | DOI | MR | Zbl
[10] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI, 1967 | MR
[11] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] P. Maremonti, V. Solonnikov, “On estimates of solutions to the nonstationary Stokes problem in the anisotropic Sobolev spaces with the mixed norm”, Zap. Nauchn. Semin. POMI, 293, 1994, 124–150 | MR
[13] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl
[14] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[15] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St.-Petersburg Math. J., 14:1 (2003), 147–178 | MR
[16] G. A. Seregin, “Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl
[17] G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes system near the boundary”, Zap. Nauchn. Semin. POMI, 295, 2003, 168–179 | MR | Zbl
[18] V. A. Solonnikov, “Estimates of solutions of the nonstationary linearized system of Navier–Stokes equations”, Trudy Steklov Mat. Inst., 70, 1964, 213–317 | MR | Zbl
[19] V. A. Solonnikov, “Estimates of solutions of the nonstationary Navier–Stokes system”, Zap. Nauchn. Semin. POMI, 38, 1973, 153–231 | MR | Zbl
[20] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl
[21] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Usp. Mat. Nauk, 58:2(350) (2003), 123–156 | MR | Zbl