Boundary partial regularity for the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 158-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove two conditions of local Hölder continuity for suitable weak solutions to the Navier–Stokes equations near the smooth curved part of the boundary of a domain. One of these condition has the form of the Caffarelli–Kohn–Nirenberg condition for the local boundedness of suitable weak solutions at the interior points of the space-time cylinder. The corresponding results near the plane part of the boundary were established earlier by G. Seregin.
@article{ZNSL_2004_310_a8,
     author = {G. A. Seregin and T. N. Shilkin and V. A. Solonnikov},
     title = {Boundary partial regularity for the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--190},
     year = {2004},
     volume = {310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
AU  - T. N. Shilkin
AU  - V. A. Solonnikov
TI  - Boundary partial regularity for the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 158
EP  - 190
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/
LA  - en
ID  - ZNSL_2004_310_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%A T. N. Shilkin
%A V. A. Solonnikov
%T Boundary partial regularity for the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 158-190
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/
%G en
%F ZNSL_2004_310_a8
G. A. Seregin; T. N. Shilkin; V. A. Solonnikov. Boundary partial regularity for the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 158-190. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a8/

[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 | MR | Zbl

[2] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[3] H. J. Choe, J. L. Lewis, “On the singular set in the Navier–Stokes equations”, J. Funct. Anal., 175:2 (2000), 348–369 | DOI | MR | Zbl

[4] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Usp. Mat. Nauk, 58:2 (2003), 3–44. | MR

[5] R. Farwig, H. Sohr, “The stationary and nonstationary Stokes system in exterior domains with nonzero divergence and nonzero boundary data”, Math. Meth. Appl. Sci., 17 (1994), 269–291 | DOI | MR | Zbl

[6] Y. Giga, H. Sohr, “Abstract $L^p$-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains”, J. Funct. Anal., 102 (1991), 72–94 | DOI | MR | Zbl

[7] E. Hopf, “Über die Anfangswertaufgabe fur die hydrodynamischen Gründgleichungen”, Math. Nachr., 4 (1950), 213–231 | MR

[8] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid, 2nd rev. aug. ed., Nauka, Moscow, 1970

[9] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Mathematical Fluid Mechanics, 1 (1999), 356–387 | DOI | MR | Zbl

[10] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI, 1967 | MR

[11] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] P. Maremonti, V. Solonnikov, “On estimates of solutions to the nonstationary Stokes problem in the anisotropic Sobolev spaces with the mixed norm”, Zap. Nauchn. Semin. POMI, 293, 1994, 124–150 | MR

[13] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[14] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[15] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St.-Petersburg Math. J., 14:1 (2003), 147–178 | MR

[16] G. A. Seregin, “Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[17] G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes system near the boundary”, Zap. Nauchn. Semin. POMI, 295, 2003, 168–179 | MR | Zbl

[18] V. A. Solonnikov, “Estimates of solutions of the nonstationary linearized system of Navier–Stokes equations”, Trudy Steklov Mat. Inst., 70, 1964, 213–317 | MR | Zbl

[19] V. A. Solonnikov, “Estimates of solutions of the nonstationary Navier–Stokes system”, Zap. Nauchn. Semin. POMI, 38, 1973, 153–231 | MR | Zbl

[20] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[21] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Usp. Mat. Nauk, 58:2(350) (2003), 123–156 | MR | Zbl