Voir la notice du chapitre de livre
@article{ZNSL_2004_310_a5,
author = {V. G. Osmolovskii},
title = {Dependence of the phase transition temperature on the domain size},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--113},
year = {2004},
volume = {310},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/}
}
V. G. Osmolovskii. Dependence of the phase transition temperature on the domain size. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 98-113. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/
[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR
[2] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl
[3] S. Mul̈ler, Variational models for microstructure and phase transitions, Lect. Notes, 2, Max-Plack-Institut fur̈ Mathematik in den Naturwissenschaften, Leipzig, 1998 | MR
[4] V. G. Osmolovskii, Variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnoi sredy, Izd. SPb. gos. universiteta, SPb., 2000
[5] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnoi sredy”, Problemy matematicheskogo analiza, 27, 2004, 171–206
[6] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren der Math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg-New York, 1966 | MR | Zbl
[7] V. G. Osmolovskii, “Zavisimost kharaktera sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy ot parametrov zadachi”, Zap. nauchn. semin. POMI, 271, 2000, 175–187 | MR | Zbl
[8] A. S. Mikhailov, V. S. Mikhailov, “Fazovye perekhody v mnogofazovykh sredakh”, Problemy matematicheskogo analiza, 20, 2000, 120–169