Dependence of the phase transition temperature on the domain size
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 98-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dependence of the phase transition temperature on the domain size is investigated for a double-well quadratic potential. It is shown that for a domain whose boundary is subjected to a hydrostatical pressure, the temperature of phase transitions is independent of the domain and the surface tension coefficient and depends exclusively on the properties of an elastic media. If the displacement field vanishes on the boundary, then for sufficiently small domains the temperature also does not depend on the surface tension and domain size and is determined by properties of an elastic media only.
@article{ZNSL_2004_310_a5,
     author = {V. G. Osmolovskii},
     title = {Dependence of the phase transition temperature on the domain size},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--113},
     year = {2004},
     volume = {310},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - Dependence of the phase transition temperature on the domain size
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 98
EP  - 113
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/
LA  - ru
ID  - ZNSL_2004_310_a5
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T Dependence of the phase transition temperature on the domain size
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 98-113
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/
%G ru
%F ZNSL_2004_310_a5
V. G. Osmolovskii. Dependence of the phase transition temperature on the domain size. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 98-113. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a5/

[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR

[2] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[3] S. Mul̈ler, Variational models for microstructure and phase transitions, Lect. Notes, 2, Max-Plack-Institut fur̈ Mathematik in den Naturwissenschaften, Leipzig, 1998 | MR

[4] V. G. Osmolovskii, Variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnoi sredy, Izd. SPb. gos. universiteta, SPb., 2000

[5] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnoi sredy”, Problemy matematicheskogo analiza, 27, 2004, 171–206

[6] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren der Math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg-New York, 1966 | MR | Zbl

[7] V. G. Osmolovskii, “Zavisimost kharaktera sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy ot parametrov zadachi”, Zap. nauchn. semin. POMI, 271, 2000, 175–187 | MR | Zbl

[8] A. S. Mikhailov, V. S. Mikhailov, “Fazovye perekhody v mnogofazovykh sredakh”, Problemy matematicheskogo analiza, 20, 2000, 120–169