Degenerate Venttsel' boundary value problem to elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 82-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The existence theorem is proved for quasilinear degenerate elliptic Venttsel' BVP.
@article{ZNSL_2004_310_a4,
     author = {A. I. Nazarov},
     title = {Degenerate {Venttsel'} boundary value problem to elliptic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--97},
     year = {2004},
     volume = {310},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a4/}
}
TY  - JOUR
AU  - A. I. Nazarov
TI  - Degenerate Venttsel' boundary value problem to elliptic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 82
EP  - 97
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a4/
LA  - ru
ID  - ZNSL_2004_310_a4
ER  - 
%0 Journal Article
%A A. I. Nazarov
%T Degenerate Venttsel' boundary value problem to elliptic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 82-97
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a4/
%G ru
%F ZNSL_2004_310_a4
A. I. Nazarov. Degenerate Venttsel' boundary value problem to elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 82-97. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a4/

[1] D. E. Apushkinskaya, A. I. Nazarov, “A survey of results on nonlinear Venttsel problems”, Appl. Math., 45:1 (2000), 69–80 | DOI | MR | Zbl

[2] D. E. Apushkinskaya, A. I. Nazarov, “Gelderovskie otsenki reshenii vyrozhdennykh granichnykh zadach Venttselya dlya parabolicheskikh i ellipticheskikh uravnenii nedivergentnogo vida”, Problemy matematicheskoi fiziki i teorii funktsii, Probl. mat. anal., 17, SPb, 1997, 3–19 | MR

[3] D. E. Apushkinskaya, A. I. Nazarov, “Otsenki gradienta dlya reshenii statsionarnykh vyrozhdennykh zadach Venttselya”, Nelineinye uravneniya s chastnymi proizvodnymi i teoriya funktsii, Probl. mat. anal., 18, SPb., 1998, 43–69

[4] O. A. Ladyzhenskaya, N. N. Uraltseva, “Obzor rezultatov po razreshimosti kraevykh zadach dlya ravnomerno ellipticheskikh i ravnomerno parabolicheskikh uravnenii vtorogo poryadka, imeyuschikh neogranichennye osobennosti”, UMN, 41:5 (1986), 59–83 | MR | Zbl

[5] N. V. Krylov, Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Geldera, Universitetskaya seriya. T. 2, Nauchnaya kniga, Novosibirsk, 1998 | MR

[6] N. S. Trudinger, “Fully nonlinear, uniformly elliptic equations under natural structure conditions”, Trans. Am. Math. Soc., 278 (1983), 751–769 | DOI | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR

[8] D. E. Apushkinskaya, A. I. Nazarov, “O kvazilineinoi statsionarnoi zadache Venttselya”, Zap. nauchn. semin. POMI, 221, 1995, 20–29 | MR