On density of smooth functions in Sobolev–Orlich spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 67-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the question of density of smooth functions in Sobolev spaces of variable orders also called Sobolev–Orlich spaces. In particular, we generalize the earlier obtained logarithmic condition and give a number of examples.
@article{ZNSL_2004_310_a3,
     author = {V. V. Zhikov},
     title = {On density of smooth functions in {Sobolev{\textendash}Orlich} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--81},
     year = {2004},
     volume = {310},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a3/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - On density of smooth functions in Sobolev–Orlich spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 67
EP  - 81
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a3/
LA  - ru
ID  - ZNSL_2004_310_a3
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T On density of smooth functions in Sobolev–Orlich spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 67-81
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a3/
%G ru
%F ZNSL_2004_310_a3
V. V. Zhikov. On density of smooth functions in Sobolev–Orlich spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 67-81. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a3/

[1] D. E. Edmunds, J. Rakosnik, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | MR | Zbl

[2] X. Fan, J. Shen, D. Zhao, “Sobolev embeddings theorems for spaces $W^{k,p(x)}$”, J. Math. Anal. Appl., 262:2 (2001), 749–760 | DOI | MR | Zbl

[3] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR ser. matem., 50:4 (1986), 675–711 | MR

[4] Fan Xianling, “Regularity of nonstandard lagrangian $f(x,\xi)$”, Nonlinear Analysis, Theory, Methods and Applications, 27:6 (1996), 669–678 | DOI | MR | Zbl

[5] V. V. Zhikov, “Lavrentiev's phenomenon and homogenization for some variational problems”, Composite Media and Homogenization Theory, World Scientific, Singapore, 1995, 273–288

[6] V. V. Zhikov, “Ob effekte Lavrenteva”, DAN RAN, 345:1 (1995), 10–14 | MR | Zbl

[7] V. V. Zhikov, “On Lavrentiev's Phenomen”, Russian Journal of Mathematical Pfysics, 3:2 (1995), 249–269 | MR | Zbl

[8] V. V. Zhikov, “On Some Variational Problems”, Russian Journal of Mathematical Physics, 5:1 (1997), 105–116 | MR | Zbl

[9] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Ration, Ann Arbor, London, 1992 | MR | Zbl