Optimal regularity of lower dimensional obstacle problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we prove that solutions to the “boundary obstacle problem” have the optimal regularity, $C^{1,1/2}$, in any space dimension. This bound depends only on the local $L^2$ norm of the solution. Main ingredients in the proof are the quasiconvexity of the solution and a monotonicity formula for an appropriate weighted average of the local energy of the normal derivative of the solution.
@article{ZNSL_2004_310_a2,
     author = {I. Athanasopoulos and L. A. Caffarelli},
     title = {Optimal regularity of lower dimensional obstacle problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--66},
     year = {2004},
     volume = {310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/}
}
TY  - JOUR
AU  - I. Athanasopoulos
AU  - L. A. Caffarelli
TI  - Optimal regularity of lower dimensional obstacle problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 49
EP  - 66
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/
LA  - en
ID  - ZNSL_2004_310_a2
ER  - 
%0 Journal Article
%A I. Athanasopoulos
%A L. A. Caffarelli
%T Optimal regularity of lower dimensional obstacle problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 49-66
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/
%G en
%F ZNSL_2004_310_a2
I. Athanasopoulos; L. A. Caffarelli. Optimal regularity of lower dimensional obstacle problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/

[1] I. Athanasopoulos, “Regularity of the solution for minimization problems with free boundary on a hyperplane”, Commun. Partial Differ. Equations, 14:8–9 (1989), 1043–1058 | DOI | MR | Zbl

[2] L. A. Caffarelli, “Further regularity for the Signorini problem”, Commun. Partial Differ. Equations, 4:9 (1979), 1067–1075 | DOI | MR | Zbl

[3] L. A. Caffarelli, “The obstacle problem revisited”, J. Fourier Anal. Appl., 4 (1998), 383–402 | DOI | MR | Zbl

[4] G. Duvaut, J. L. Lions, Les Inequations en Mechanique et en Physique, Dunod, Paris, 1972 | MR | Zbl

[5] J. L. Lions, G. Stampacchia, “Variational inequalities”, Comm. Pure Applied Math., 20 (1967), 493–519 | DOI | MR | Zbl

[6] D. Richardson, Thesis, University of British Columbia, 1978

[7] L. Silvestre, Thesis, University of Texas at Austin, in prep | Zbl

[8] N. N. Uraltseva, “On the regularity of solutions of variational inequalities”, Usp. Mat. Nauk, 42 (1987), 151–174 | MR