Optimal regularity of lower dimensional obstacle problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that solutions to the “boundary obstacle problem” have the optimal regularity, $C^{1,1/2}$, in any space dimension. This bound depends only on the local $L^2$ norm of the solution. Main ingredients in the proof are the quasiconvexity of the solution and a monotonicity formula for an appropriate weighted average of the local energy of the normal derivative of the solution.
@article{ZNSL_2004_310_a2,
author = {I. Athanasopoulos and L. A. Caffarelli},
title = {Optimal regularity of lower dimensional obstacle problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--66},
publisher = {mathdoc},
volume = {310},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/}
}
I. Athanasopoulos; L. A. Caffarelli. Optimal regularity of lower dimensional obstacle problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/