Optimal regularity of lower dimensional obstacle problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that solutions to the “boundary obstacle problem” have the optimal regularity, $C^{1,1/2}$, in any space dimension. This bound depends only on the local $L^2$ norm of the solution. Main ingredients in the proof are the quasiconvexity of the solution and a monotonicity formula for an appropriate weighted average of the local energy of the normal derivative of the solution.
@article{ZNSL_2004_310_a2,
     author = {I. Athanasopoulos and L. A. Caffarelli},
     title = {Optimal regularity of lower dimensional obstacle problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--66},
     publisher = {mathdoc},
     volume = {310},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/}
}
TY  - JOUR
AU  - I. Athanasopoulos
AU  - L. A. Caffarelli
TI  - Optimal regularity of lower dimensional obstacle problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 49
EP  - 66
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/
LA  - en
ID  - ZNSL_2004_310_a2
ER  - 
%0 Journal Article
%A I. Athanasopoulos
%A L. A. Caffarelli
%T Optimal regularity of lower dimensional obstacle problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 49-66
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/
%G en
%F ZNSL_2004_310_a2
I. Athanasopoulos; L. A. Caffarelli. Optimal regularity of lower dimensional obstacle problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 49-66. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a2/