, with strong nonlinear terms in the gradient. Under a smallness condition on the gradient of a solution in the Morry space $L^{q,n-q}$, we estimate $L^p$-norm of the gradient, $p>q$, and the Hölder norm of the solution for the case $n=2$. An abstract theorem on “quasireverse Hölder inequalities” proved by the author earlier is essencially used.
@article{ZNSL_2004_310_a1,
author = {A. A. Arkhipova},
title = {New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--48},
year = {2004},
volume = {310},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/}
}
TY - JOUR AU - A. A. Arkhipova TI - New a priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1 JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 19 EP - 48 VL - 310 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/ LA - en ID - ZNSL_2004_310_a1 ER -
A. A. Arkhipova. New a priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear elliptic equations, Nauka, Moscow, 1964; Americ. Press, New York, 1968 ; Second Russian edition, Nauka, 1973 | Zbl
[2] S. Hildebrandt, “Nonlinear elliptic systems and harmonic mappings”, Vorlesungsreihe SFB, 72:3 (1980) | MR
[3] S. Hildebrandt, K. O. Widman, “On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 4 (1977), 144–178 | MR | Zbl
[4] M. Wiegner, “Ein optimaler Regularitätssatz für Schwache Lösungen gewisser elliptischer Systeme”, Math. Z., 147 (1976), 21–28 | DOI | MR | Zbl
[5] W. von Wahl, “Existenzsätze für nichlineare elliptic systems”, Nachr. Acad. Wissen.Göttingen, 3 (1978), 53–62 | MR
[6] J. Frehse, “On two-dimensional quasilinear elliptic systems”, Manuscripta Math., 28 (1979), 21–50 | DOI | MR
[7] M. Giaquinta, E. Giusti, “Nonlinear elliptic systems with quadratic growth”, Manuscripta Math., 24 (1978), 323–349 | DOI | MR | Zbl
[8] M. Giaquinta, G. Modica, “Regularity results for some classes of higher order non-linear elliptic systems”, J. Reine Angew. Math., 311–312 (1979), 145–169 | MR | Zbl
[9] S. Campanato, “Nonlinear elliptic systems with quadratic growth”, Confer. Sem. Mat. Univ. Bari, 208 (1986), 16 | MR
[10] P. A. Ivert, “Regulartätsuntersuchungen von quasilinearenn Differentialgleichungen zweiter Orgnung”, Manuscripta Math., 30 (1979), 53–88 | DOI | MR | Zbl
[11] A. A. Arkhipova, “On the regularity of solutions of boundary-value problems for quasilinear elliptic systems with quadratic nonlinearity”, J. Math. Sci., 80:6 (1996), 2208–2225 ; Sbornik Problemy Mat. Analiza, 15, St-Petersb. Univ., 1995, 47–49 | DOI | MR
[12] A. A. Arkhipova, “On the Neumann problem for nonlinear elliptic systems with quadratic nonlinearity”, St-Petersburg Math. J., 8:5 (1997), 845–861 | MR
[13] A. A. Arkhipova, “Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $q$ greater than two”, Zap. Nauchn. Semin. POMI, 271, 2000, 63–82 | MR | Zbl
[14] M. Giaquinta, “Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Annals of Math. Studies, 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl
[15] A. A. Arkhipova, “Solvability problem for nondiagonal elliptic systems with quadratic nonlinearity in the gradient (two-dimensional case)”, Zap. Nauchn. Semin. POMI, 295, 2003, 5–17 | MR | Zbl
[16] A. A. Arkhipova, “Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems”, Rendic.Mat. Acc. Lincei, 14:9 (2003), 91–108 | MR | Zbl
[17] A. A. Arkhipova, “On the global solvability of the Cauchy–Dirichlet problem for a class of nondiagonal parabolic systems with $q$-nonlinearity in the gradient, $12$”, Zap. Nauchn. Semin. POMI, 288, 2002, 34–78 | MR | Zbl
[18] A. Kufner, O. John, S. Fučik, Functional Spases, Academia, Prague, 1977 | Zbl
[19] S. Campanato, “Hölder continuity of the solutions of some nonlinear elliptic problems”, Adv. Math., 48 (1983), 16–41 | DOI | MR
[20] Y. Chen, M. Struwe, “Existence and partial regularity results for the heat flow for harmonic maps”, Math. Z., 201 (1989), 83–103 | DOI | MR | Zbl
[21] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Communic. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl
[22] A. A. Arkhipova, “On classical solvability of the Cauchy–Dirichlet problem for nondiagonal parabolic systems in the case of two spatial variables”, Transl. Amer. Math. Soc., Ser. 2, 209 (2003), 1–19 ; Proceed. St-Petersburg Math. Soc., 9, 2001, 3–22 | MR | Zbl
[23] C. Hamburger, “A new partial regularity proof for solutions of nonlinear elliptic systems”, Manuscripta Math., 95:1 (1998), 11–31 | DOI | MR | Zbl
[24] A. A. Arkhipova, “Boundary a priori estimates for solutions of nondiagonal elliptic systems with strong nonlinearity”, Izv. Ross. Akad. Nauk Ser. Mat., 68:2 (2004), 23–38 | MR