New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 19-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $q$-nonlinear nondiagonal elliptic systems, $1$, with strong nonlinear terms in the gradient. Under a smallness condition on the gradient of a solution in the Morry space $L^{q,n-q}$, we estimate $L^p$-norm of the gradient, $p>q$, and the Hölder norm of the solution for the case $n=2$. An abstract theorem on “quasireverse Hölder inequalities” proved by the author earlier is essencially used.
@article{ZNSL_2004_310_a1,
     author = {A. A. Arkhipova},
     title = {New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--48},
     publisher = {mathdoc},
     volume = {310},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 19
EP  - 48
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/
LA  - en
ID  - ZNSL_2004_310_a1
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 19-48
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/
%G en
%F ZNSL_2004_310_a1
A. A. Arkhipova. New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1