New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 19-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider $q$-nonlinear nondiagonal elliptic systems, $1$, with strong nonlinear terms in the gradient. Under a smallness condition on the gradient of a solution in the Morry space $L^{q,n-q}$, we estimate $L^p$-norm of the gradient, $p>q$, and the Hölder norm of the solution for the case $n=2$. An abstract  theorem on “quasireverse Hölder inequalities” proved by the author earlier is essencially used.
			
            
            
            
          
        
      @article{ZNSL_2004_310_a1,
     author = {A. A. Arkhipova},
     title = {New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--48},
     publisher = {mathdoc},
     volume = {310},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Arkhipova TI - New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1 JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 19 EP - 48 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a1/ LA - en ID - ZNSL_2004_310_a1 ER -
A. A. Arkhipova. New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1
