Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 84-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper completely solves the problem of optimal diagonal scaling for quasireal Hermitian positive-definite matrices of order 3. In particular, in the most interesting irreducible case, it is demonstrated that for any matrix $C$ from the class considered there is a uniquely determined optimally scaled matrix $D^*_0CD_0$ of one of the four canonical types, and formulas for the entries of the diagonal matrix $D_0$ are presented as well as formulas for the eigenvalues and eigenvectors of $D^*_0CD_0$ and for the optimal condition number of $C$, which is equal to $k(D^*_0CD_0)$. The optimality of the Jacobi scaling is analyzed.
			
            
            
            
          
        
      @article{ZNSL_2004_309_a5,
     author = {L. Yu. Kolotilina},
     title = {Solution of the problem of optimal diagonal scaling for quasireal {Hermitian} positive-definite},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--126},
     publisher = {mathdoc},
     volume = {309},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/}
}
                      
                      
                    TY - JOUR AU - L. Yu. Kolotilina TI - Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 84 EP - 126 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/ LA - ru ID - ZNSL_2004_309_a5 ER -
L. Yu. Kolotilina. Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 84-126. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/