Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 84-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper completely solves the problem of optimal diagonal scaling for quasireal Hermitian positive-definite matrices of order 3. In particular, in the most interesting irreducible case, it is demonstrated that for any matrix $C$ from the class considered there is a uniquely determined optimally scaled matrix $D^*_0CD_0$ of one of the four canonical types, and formulas for the entries of the diagonal matrix $D_0$ are presented as well as formulas for the eigenvalues and eigenvectors of $D^*_0CD_0$ and for the optimal condition number of $C$, which is equal to $k(D^*_0CD_0)$. The optimality of the Jacobi scaling is analyzed.
@article{ZNSL_2004_309_a5,
     author = {L. Yu. Kolotilina},
     title = {Solution of the problem of optimal diagonal scaling for quasireal {Hermitian} positive-definite},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--126},
     year = {2004},
     volume = {309},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 84
EP  - 126
VL  - 309
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/
LA  - ru
ID  - ZNSL_2004_309_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 84-126
%V 309
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/
%G ru
%F ZNSL_2004_309_a5
L. Yu. Kolotilina. Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 84-126. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/

[1] L. Yu. Kolotilina, “Optimalno obuslovlennye blochnye $2\times2$ matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 72–85 | MR | Zbl

[2] L. Yu. Kolotilina, “O krainikh sobstvennykh znacheniyakh blochnykh $2\times2$ ermitovykh matrits”, Zap. nauchn. semin. POMI, 296, 2003, 27–38 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki dlya krainikh sobstvennykh znachenii blochnykh $2\times2$ ermitovykh matrits”, Zap. nauchn. semin. POMI, 301, 2003, 172–194

[4] F. L. Bauer, “Optimally scaled matrices”, Numer. Math., 5 (1963), 73–87 | DOI | MR | Zbl

[5] G. E. Forsythe, E. G. Straus, “On best contioned matrices”, Proc. Amer. Math. Soc., 6 (1955), 340–345 | DOI | MR | Zbl

[6] R. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991 | MR

[7] C. McCarthy, G. Strang, “Optimal conditioning of matrices”, SIAM J. Numer. Anal., 10 (1973), 370–388 | DOI | MR | Zbl

[8] A. Shapiro, “Optimally scaled natrices, necessary and sufficient conditions”, Numer. Math., 39 (1982), 239–245 | DOI | MR | Zbl

[9] A. Shapiro, “Optimal block diagonal $l_2$-scaling of matrices”, SIAM J. Numer. Math., 22 (1985), 81–94 | DOI | MR | Zbl

[10] A. Van Der Sluis, “Condition numbers and equilibration of matrices”, Numer. Math., 14 (1969), 14–23 | DOI | MR | Zbl