@article{ZNSL_2004_309_a5,
author = {L. Yu. Kolotilina},
title = {Solution of the problem of optimal diagonal scaling for quasireal {Hermitian} positive-definite},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--126},
year = {2004},
volume = {309},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/}
}
L. Yu. Kolotilina. Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 84-126. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a5/
[1] L. Yu. Kolotilina, “Optimalno obuslovlennye blochnye $2\times2$ matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 72–85 | MR | Zbl
[2] L. Yu. Kolotilina, “O krainikh sobstvennykh znacheniyakh blochnykh $2\times2$ ermitovykh matrits”, Zap. nauchn. semin. POMI, 296, 2003, 27–38 | MR | Zbl
[3] L. Yu. Kolotilina, “Otsenki dlya krainikh sobstvennykh znachenii blochnykh $2\times2$ ermitovykh matrits”, Zap. nauchn. semin. POMI, 301, 2003, 172–194
[4] F. L. Bauer, “Optimally scaled matrices”, Numer. Math., 5 (1963), 73–87 | DOI | MR | Zbl
[5] G. E. Forsythe, E. G. Straus, “On best contioned matrices”, Proc. Amer. Math. Soc., 6 (1955), 340–345 | DOI | MR | Zbl
[6] R. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991 | MR
[7] C. McCarthy, G. Strang, “Optimal conditioning of matrices”, SIAM J. Numer. Anal., 10 (1973), 370–388 | DOI | MR | Zbl
[8] A. Shapiro, “Optimally scaled natrices, necessary and sufficient conditions”, Numer. Math., 39 (1982), 239–245 | DOI | MR | Zbl
[9] A. Shapiro, “Optimal block diagonal $l_2$-scaling of matrices”, SIAM J. Numer. Math., 22 (1985), 81–94 | DOI | MR | Zbl
[10] A. Van Der Sluis, “Condition numbers and equilibration of matrices”, Numer. Math., 14 (1969), 14–23 | DOI | MR | Zbl