@article{ZNSL_2004_309_a4,
author = {L. Yu. Kolotilina},
title = {The singularity/nonsingularity problem for matrices satisfying diagonal dominance conditions in terms of directed graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--83},
year = {2004},
volume = {309},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a4/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - The singularity/nonsingularity problem for matrices satisfying diagonal dominance conditions in terms of directed graphs JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 40 EP - 83 VL - 309 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a4/ LA - ru ID - ZNSL_2004_309_a4 ER -
%0 Journal Article %A L. Yu. Kolotilina %T The singularity/nonsingularity problem for matrices satisfying diagonal dominance conditions in terms of directed graphs %J Zapiski Nauchnykh Seminarov POMI %D 2004 %P 40-83 %V 309 %U http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a4/ %G ru %F ZNSL_2004_309_a4
L. Yu. Kolotilina. The singularity/nonsingularity problem for matrices satisfying diagonal dominance conditions in terms of directed graphs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 40-83. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a4/
[1] Yu. A. Alpin, “Granitsy dlya perronovskogo kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Mat. zametki, 58 (1995), 635–637 | MR
[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1953 | MR
[3] L. Yu. Kolotilina, “O teoreme Brualdi”, Zap. nauchn. semin. POMI, 284, 2002, 48–63 | MR
[4] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl
[5] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl
[6] A. Brauer, “Limits for the characteristic roots of a matrix, II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl
[7] A. Brauer, “Limits for the characteristic roots of a matrix, IV”, Duke Math. J., 19 (1952), 75–91 | DOI | MR | Zbl
[8] R. Brualdi, “Matrices, eigenvalues, and directed graphs”, Linear and Multilinear Algebra, 11 (1982), 143–165 | DOI | MR | Zbl
[9] M. Fiedler, V. Pták, “Cyclic products and an inequality for determinants”, Czechoslovak Math. J., 19 (1969), 428–450 | MR
[10] F. Harary, Graph Theory, Addison-Wesley Publ Co., 1969 | MR | Zbl
[11] R. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985 | MR | Zbl
[12] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl
[13] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl
[14] B. Li, M. J. Tsatsomeros, “Doubly diagonally dominant matrices”, Linear Algebra Appl., 261 (1997), 221–235 | DOI | MR | Zbl
[15] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl
[16] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR
[17] A. Ostrowski, “Über das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakteristischen Wurzeln von Matrizen”, Compositio Math., 9 (1951), 209–226 | MR | Zbl
[18] Z. Xian, Gu Dunhe, “A note on A. Brauer's theorem”, Linear Algebra Appl., 196 (1994), 163–174 | DOI | MR | Zbl