Solvability of singular boundary-value problems for ordinary differential equations of order~$2m$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 174-188
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Theorems on the existence and uniqueness of generalized and classical solutions of the first  boundary-value problem for an ordinary differential equation of order $2m$ in the case where the functions involved are nonintegrable at the points at which boundary conditions are imposed (singular problems) are established. The results obtained justify the applicability of the Ritz and Galerkin methods to the problems considered.
			
            
            
            
          
        
      @article{ZNSL_2004_309_a10,
     author = {M. N. Yakovlev},
     title = {Solvability of singular boundary-value problems for ordinary differential equations of order~$2m$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--188},
     publisher = {mathdoc},
     volume = {309},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a10/}
}
                      
                      
                    TY - JOUR AU - M. N. Yakovlev TI - Solvability of singular boundary-value problems for ordinary differential equations of order~$2m$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 174 EP - 188 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a10/ LA - ru ID - ZNSL_2004_309_a10 ER -
M. N. Yakovlev. Solvability of singular boundary-value problems for ordinary differential equations of order~$2m$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 174-188. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a10/