Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 161-181
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For second order derivatives of eigenvectors in a thin anisotropic heterogeneous plate $\Omega_h$, we derive estimates of the weighted $L_2$-norms with the majorants whose dependence on both, the plate thickness $h$ and the eigenvalue number, are expressed explicitly. These estimates keep the asymptotic sharpness along the whole spectrum while, inside its low-frequency range, the majorants remain bounded as $h\to+0$. The latter is rather unexpected fact because, for the first eigenfunction $u^1$ of the alike boundary value problem for a scalar second order differential operator with variable coefficients, the norm $\Vert\nabla_x^2u^0;L_2(\Omega_h)\Vert$ is of order $h^{-1}$ and grows as $h$ vanishes.
			
            
            
            
          
        
      @article{ZNSL_2004_308_a9,
     author = {S. A. Nazarov},
     title = {Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {161--181},
     publisher = {mathdoc},
     volume = {308},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a9/}
}
                      
                      
                    TY - JOUR AU - S. A. Nazarov TI - Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 161 EP - 181 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a9/ LA - ru ID - ZNSL_2004_308_a9 ER -
S. A. Nazarov. Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 161-181. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a9/