About propagation of seismic waves in block fluid media
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 124-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Propagation of seismic waves in block two- and three-dimensional fluid media is investigated. For these media the effective models which are anisotropic fluids are established. For velocities of wave propagation in these fluid media the formulas are derived and analyzed. The particular investigation is performed in the cases that blocks with different fluids alternate along the coordinate axes or that blocks filled by a fluid are surrounded by blocks with another fluid. In the both cases the dependence of wave velocities in the whole of the medium on the differences of densities and of wave velocities in the fluid blocks is investigated.
@article{ZNSL_2004_308_a7,
     author = {L. A. Molotkov},
     title = {About propagation of seismic waves in block fluid media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--146},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a7/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - About propagation of seismic waves in block fluid media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 124
EP  - 146
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a7/
LA  - ru
ID  - ZNSL_2004_308_a7
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T About propagation of seismic waves in block fluid media
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 124-146
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a7/
%G ru
%F ZNSL_2004_308_a7
L. A. Molotkov. About propagation of seismic waves in block fluid media. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 124-146. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a7/

[1] M. A. Biot, “Theory of propagation of elastic waves in fluid-saturated porous solid. I Low-frequency range”, J. Acoust. Soc. Am., 28:2 (1956), 168–178 | DOI | MR

[2] L. A. Molotkov, “Ob ekvivalentnosti sloisto-periodicheskikh i transversalno-izotropnykh sred”, Zap. nauchn. semin. LOMI, 89, 1979, 219–233 | MR | Zbl

[3] L. A. Molotkov, Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, SPb., 2001

[4] L. A. Molotkov, “Ob effektivnoi modeli uprugoi blochnoi sredy s proskalzyvaniem na granitsakh”, Zap. nauchn. semin. POMI, 275, 2001, 140–164 | MR | Zbl

[5] L. A. Molotkov, “O rasprostranenii seismicheskikh voln v blochnykh uprugo-zhidkikh sredakh, I”, Zap. nauchn. semin. POMI, 297, 2003, 230–253 | MR | Zbl

[6] L. A. Molotkov, “O rasprostranenii seismicheskikh voln v blochnykh uprugo-zhidkikh sredakh, II”, Zap. nauchn. semin. POMI, 297 (2003), 254–271 | MR | Zbl

[7] M. W. Lee, D. R. Hutchinson, T. S. Collett, W. P. Dillon, “Seismic velocities for hydrate-bearing sediments using weighted equation”, J. Geoph. Res., 101:B9 (1990), 20,347–20,358

[8] C. F. Pearson, J. Murphy, R. Hermes, “Acoustic and resistivity measurments on rock samples containing tetrahydrofuran hydrates”, J. Geophys. Int., 91 (1986), 14,132–14,138

[9] J. P. Castanga, M. L. Batle, R. L. Eastwood, “Relatioship between compressional-wave and shear-wave velocities in elastic silicate rocks”, Geophysics, 50 (1985), 571–581 | DOI