On an integral equation in the problem of the plane wave diffraction by a circular transparent cone
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 101-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of diffraction by a transparent convex cone is studied. The uniqueness theorem is proven in the problem of diffraction for the illumination by a compact source. For the circular cone the solution is obtained in the form of the Kontorovich–Lebedev integrals and of the Fourier series expansions. A singular integral equation is deduced for the Fourier coefficients and its reqularization is performed.
@article{ZNSL_2004_308_a6,
     author = {M. A. Lyalinov},
     title = {On an integral equation in the problem of the plane wave diffraction by a~circular transparent cone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--123},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a6/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - On an integral equation in the problem of the plane wave diffraction by a circular transparent cone
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 101
EP  - 123
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a6/
LA  - ru
ID  - ZNSL_2004_308_a6
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T On an integral equation in the problem of the plane wave diffraction by a circular transparent cone
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 101-123
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a6/
%G ru
%F ZNSL_2004_308_a6
M. A. Lyalinov. On an integral equation in the problem of the plane wave diffraction by a circular transparent cone. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 101-123. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a6/

[1] B. V. Budaev, Diffraction by Wedges, Pitman Research Notes in Mathematics Series, 322, Longmann, 1995 | MR | Zbl

[2] J.-P. Croissille, G. Lebeau, Diffraction by an Immersed Elastic Wedge, Lect. Notes Math., 1723, Springer, 1999 | MR

[3] A. V. Osipov, “O metode integralov Kontorovicha–Lebedeva v zadachakh difraktsii voln v sektorialnykh sredakh”, Problemy difraktsii i rasprostraneniya voln, 25, Izd-vo SPbGU, 1993, 173–218

[4] V. A. Borovikov, Difraktsiya na mnogougolnikakh i mnogogrannikakh, Nauka, M., 1966 | MR

[5] V. P. Smyshlyaev, “Diffractijon by conical surfaces at high frequences”, Wave Motion, 12:4 (1990), 329–339 | DOI | MR | Zbl

[6] V. M. Babich, D. B. Dement'ev, B. A. Samokish, V. P. Smyshlyev, “On evaluation of the diffraction coefficients for arbitrary “non-singular” directions of a smooth convex cone”, SIAM J. Appl. Math., 60:2 (2000), 536–573 | DOI | MR | Zbl

[7] D. S. Jones, “Scattering by a cone”, Q. J. Mech. Appl. Math., 50 (1997), 499–523 | DOI | MR | Zbl

[8] J.-M. L. Bernard, Methode analytique et transformees fonctionelles pour la diffraction d'ondes par une singularite conique: equation integrale de noyau nonoscillant pour le cas d'impedance constante, Rapport CEA-R-5764, Editions Dist-Saclay, CEA/Saclay, 1997

[9] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of scalar waves by a convex impedance cone of arbitrary cross-section”, Wave Motion, 33 (2001), 155–181 | DOI | MR | Zbl

[10] M. A. Lyalinov, “O difraktsii ploskoi volny na impedansnom konuse”, Matemat. voprosy teor. rasprostr. voln, Zap. nauchn. semin. POMI, 297, 2003, 191–215 | MR | Zbl

[11] D. S. Jones, “The Kontorovich–Lebedev transform”, J. Inst. Maths Applics, 26 (1980), 133–141 | DOI | MR | Zbl

[12] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, M., 1983 | MR | Zbl

[13] V. N. Berkovich, “K teorii smeshannykh zadach dinamiki klinovidnykh kompozitov”, DAN SSSR, 314:1 (1990), 172–175 | Zbl