Mobius transform for the linear ordinary differential equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 67-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Mobius transform for the linear ordinary differential equations of the second order is examined. It is shown, that this transform has some quasi-isospectral properties. Solutions of the Heun equation with one false singularity are constructed.
@article{ZNSL_2004_308_a4,
     author = {A. Ya. Kazakov and Yu. N. Sirota},
     title = {Mobius transform for the linear ordinary differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--88},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
AU  - Yu. N. Sirota
TI  - Mobius transform for the linear ordinary differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 67
EP  - 88
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/
LA  - ru
ID  - ZNSL_2004_308_a4
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%A Yu. N. Sirota
%T Mobius transform for the linear ordinary differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 67-88
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/
%G ru
%F ZNSL_2004_308_a4
A. Ya. Kazakov; Yu. N. Sirota. Mobius transform for the linear ordinary differential equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 67-88. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1967 | MR

[2] S. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, S.-Peterburg, 2002

[3] W. Wasow, Asymptotic expansions for ordinary differential equations, John Wiley and Sons, Inc., New York, 1965 | MR | Zbl

[4] F. G. Trikomi, Differential equations, Blackie and Son, Turin, 1961

[5] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Springer, Berlin, Heidelberg, New York, 1999 | MR

[6] A. A. Bolibrukh, “21-ya problema Gilberta dlya lineinykh fuksovykh sistem”, Trudy MIAN im. V. A. Steklova, 206, 1995, 3–158 | MR | Zbl

[7] M. V. Fedoryuk, Asymptotic methods, Springer, Berlin, Heidelberg, 1993 | MR | Zbl

[8] H. Flashka, A. C. Newell, Comm. Math. Phys., 76 (1980), 65 | DOI | MR

[9] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lect. Notes Math., 1191, Berlin, Heidelberg, 1986 | MR | Zbl

[10] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uranenii, Nauka, M., 1978 | MR

[11] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[12] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[13] A. Ishkanyan, K.-A. Suominen, J. Phys. A, 36 (2003), L81 | DOI

[14] D. Schmidt, Y. Sibuya, T. J. Tabara, Asymptotic Analysis, 31 (2002), 211 | MR | Zbl

[15] A. V. Shanin, R. V. Craster, Euro. J. Appl. Math., 13 (2002), 617 | DOI | MR | Zbl