@article{ZNSL_2004_308_a4,
author = {A. Ya. Kazakov and Yu. N. Sirota},
title = {Mobius transform for the linear ordinary differential equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--88},
year = {2004},
volume = {308},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/}
}
A. Ya. Kazakov; Yu. N. Sirota. Mobius transform for the linear ordinary differential equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 67-88. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/
[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1967 | MR
[2] S. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, S.-Peterburg, 2002
[3] W. Wasow, Asymptotic expansions for ordinary differential equations, John Wiley and Sons, Inc., New York, 1965 | MR | Zbl
[4] F. G. Trikomi, Differential equations, Blackie and Son, Turin, 1961
[5] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Springer, Berlin, Heidelberg, New York, 1999 | MR
[6] A. A. Bolibrukh, “21-ya problema Gilberta dlya lineinykh fuksovykh sistem”, Trudy MIAN im. V. A. Steklova, 206, 1995, 3–158 | MR | Zbl
[7] M. V. Fedoryuk, Asymptotic methods, Springer, Berlin, Heidelberg, 1993 | MR | Zbl
[8] H. Flashka, A. C. Newell, Comm. Math. Phys., 76 (1980), 65 | DOI | MR
[9] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lect. Notes Math., 1191, Berlin, Heidelberg, 1986 | MR | Zbl
[10] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uranenii, Nauka, M., 1978 | MR
[11] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[12] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR
[13] A. Ishkanyan, K.-A. Suominen, J. Phys. A, 36 (2003), L81 | DOI
[14] D. Schmidt, Y. Sibuya, T. J. Tabara, Asymptotic Analysis, 31 (2002), 211 | MR | Zbl
[15] A. V. Shanin, R. V. Craster, Euro. J. Appl. Math., 13 (2002), 617 | DOI | MR | Zbl