Mobius transform for the linear ordinary differential equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 67-88

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mobius transform for the linear ordinary differential equations of the second order is examined. It is shown, that this transform has some quasi-isospectral properties. Solutions of the Heun equation with one false singularity are constructed.
@article{ZNSL_2004_308_a4,
     author = {A. Ya. Kazakov and Yu. N. Sirota},
     title = {Mobius transform for the linear ordinary differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--88},
     publisher = {mathdoc},
     volume = {308},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
AU  - Yu. N. Sirota
TI  - Mobius transform for the linear ordinary differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 67
EP  - 88
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/
LA  - ru
ID  - ZNSL_2004_308_a4
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%A Yu. N. Sirota
%T Mobius transform for the linear ordinary differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 67-88
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/
%G ru
%F ZNSL_2004_308_a4
A. Ya. Kazakov; Yu. N. Sirota. Mobius transform for the linear ordinary differential equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 67-88. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a4/