Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 48-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We are continuing here the study of generalized coherent states of Barut–Girardello type for the oscillator-like systems connected with the given set of orthogonal polynomials. In this work we construct the family of coherent states associated with discrete $q$-Hermite polynomials of the II-type and prove the over-completeness of this family of states by constructing the measure for unity decomposition for this family of coherent states.
@article{ZNSL_2004_308_a3,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Generalized coherent states for $q$-oscillator connected with discrete $q${-Hermite} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {308},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 48
EP  - 66
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/
LA  - ru
ID  - ZNSL_2004_308_a3
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 48-66
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/
%G ru
%F ZNSL_2004_308_a3
V. V. Borzov; E. V. Damaskinsky. Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 48-66. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/