Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 48-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We are continuing here the study of generalized coherent states of Barut–Girardello type for the oscillator-like systems connected with the given set of orthogonal polynomials. In this work we construct the family of coherent states associated with discrete $q$-Hermite polynomials of the II-type and prove the over-completeness of this family of states by constructing the measure for unity decomposition for this family of coherent states.
@article{ZNSL_2004_308_a3,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Generalized coherent states for $q$-oscillator connected with discrete $q${-Hermite} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--66},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 48
EP  - 66
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/
LA  - ru
ID  - ZNSL_2004_308_a3
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 48-66
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/
%G ru
%F ZNSL_2004_308_a3
V. V. Borzov; E. V. Damaskinsky. Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 48-66. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a3/

[1] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[2] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[3] J. R. Klauder, B.-S. Skagerstam (eds.), Coherent States – Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985 | MR | Zbl

[4] Dzh. Klauder, E. Sudarshan, Osnovy kvantovoi optiki, Mir, M., 1979

[5] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, 2-e izd., Nauka FM, M., 1971 | MR | Zbl

[6] V. I. Manko (red.), Kogerentnye sostoyaniya v kvantovoi teorii, Novosti Fundamentalnoi Fiziki, vyp. 1, Mir, M., 1972 | MR

[7] W.-M. Zhang, D. H. Feng, R. Gilmore, “Coherent states: theory and some applications”, Rev. Mod. Phys., 62 (1990), 867–927 | DOI | MR

[8] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets and their Generalizations, Springer, New York, 2000 | MR

[9] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, U. A. Mueller, “Coherent states and their generalizations: A mathematical overview”, Rev. Math. Phys., 7:7 (1995), 1013–1104 | DOI | MR | Zbl

[10] V. V. Dodonov, ““Nonclassical” states in quantum optics: a “squeezed” review of the first 75 years”, J. Opt. B, 4:1 (2002), R1–R33 | MR

[11] K. Thirulogasanthar, A. L. Hohouéto, Vector coherent states with matrix moment problems, arXiv: /math-ph/0311046 | MR

[12] K. Thirulogasanthar, G. Honnouvo, Multi Matrix Vector Coherent States, arXiv: /math-ph/0308045

[13] K. Thirulogasanthar, A. L. Hohouéto, Vector coherent states on Clifford algebras, arXiv: /math-ph/0308020 | MR

[14] S. T. Ali, M. Englis, J.-P. Gazeau, Vector Coherent States from Plancherel's Theorem, Clifford Algebras and Matrix Domains, arXiv: /math-ph/0311042

[15] T. Appl, D. H. Schiller, Generalized Hypergeometric Coherent States, arXiv: /quant-ph/0308013 | MR

[16] P. Blasiak, K. A. Penson, A. I. Solomon, Combinatorial coherent states via normal ordering of bosons, arXiv: /quant-ph/0311033 | MR

[17] S. T. Ali, R. Roknizadeh, M. K. Tavassoly, Representations of Coherent States in Nonorthogonal Bases, arXiv: /quant-ph/0310147

[18] M. Daoud, E. H. El Kinani, “The Moyal Bracket in the Coherent States framework”, J. Phys. A, 35:11 (2002), 2639 ; arXiv: /math-ph/0309037 | DOI | MR | Zbl

[19] J.-P. Gazeau, W. Piechocki, Asymptotic coherent states quantization of a particle in de Sitter space, arXiv: /hep-th/0308019 | MR

[20] C. Anastopoulos, Coherent states of spinning relativistic particles, arXiv: /quant-ph/0312025

[21] T. Shreecharan, P. K. Panigrahi, J. Banerji, Coherent states for exactly solvable potentials, arXiv: /quant-ph/0309038 | MR

[22] Y-Z. Zhang, Coherent State Construction of Representations of $osp(2|2)$ and Primary Fields of $osp(2|2)$ Conformal Field Theory, arXiv: /hep-th/0312024

[23] Lorenz Hartmann, John R. Klauder, Weak Coherent State Path Integrals, arXiv: /hep-th/0309184 | MR

[24] E. Schrödinger, “Der stetige Übergang von der Mikro- zur Macromechanik”, Naturwissenshaften, 14 (1926), 644–666 | DOI

[25] R. J. Glauber, “The Quantum Theory of Optical Coherence”, Phys. Rev., 130 (1963), 2529–2539 | DOI | MR

[26] R. J. Glauber, “Coherent and incoherent states of radiation field”, Phys. Rev., 131 (1963), 2766–2788 | DOI | MR

[27] J. R. Klauder, “The action option and a Feynman quantization of spinor fields in terms of ordinary $c$-numbers”, Ann. Phys., 11 (1960), 123–168 | DOI | MR | Zbl

[28] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10 (1963), 277–279 | DOI | MR | Zbl

[29] A. O. Barut, L. Girardello, “New “Coherent States” Associated with Noncompact Groups”, Comm. Math. Phys., 21:1 (1972), 41–55 | DOI | MR

[30] J.-P. Gazeau, J. R. Klauder, “Coherent states for systems with discrete and continuous spectrum”, J. Phys. A, 32:1 (1999), 123–132 | DOI | MR | Zbl

[31] J.-P. Antoine, J.-P. Gazeau, P. Monceau, J. R. Klauder, K. A. Penson, “Temporally stable coherent states for infinite well and Pöschl–Teller potentials”, J. Math. Phys., 42 (2001), 2349–2386 ; arXiv: /math-ph/0012044 | DOI | MR

[32] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, FM, M., 1961

[33] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl

[34] V. V. Borzov, E. V. Damaskinsky, P. P. Kulish, “Construction of the spectral measure for the deformed oscillator position operator in the case of undetermined Hamburger moment problem”, Rev. Math. Phys., 12:5 (2000), 691–710 ; arXiv: /math.QA/9803089 | DOI | MR | Zbl

[35] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya dlya ostsillyatora Lezhandra”, Zap. Nauchn. Semin. POMI, 285, 2002, 39–52 ; arXiv: /math.QA/0307187 | MR | Zbl

[36] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya i polinomy Chebysheva”, Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya, Sb. trudov mezhdunarodnoi konferentsii (Obninsk, 14–18 maya 2002 g.)

[37] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya i ortogonalnye mnogochleny”, Trudy konferentsii “Den Difraktsii 2002” (SPb, 2002)

[38] V. V. Borzov, E. V. Damaskinsky, “Barut–Girardello Coherent states for Gegenbauer oscillator”, Zap. Nauchn. Semin. POMI, 291, 2002, 43–63 | MR | Zbl

[39] V. V. Borzov, E. V. Damaskinsky, “Generalized Coherent states: A Novel Approach”, Zap. Nauchn. Semin. POMI, 300, 2003, 65–70 | MR

[40] V. V. Borzov, E. V. Damaskinsky, “Generalized Coherent States for $q$-oscillator connected with $q$-Hermite Polynomials”, Day on Diffraction 2003 (SPb, 2003)

[41] A. Odzijewicz, M. Horowski, A. Tereszkiewicz, “Integrable multi-boson systems and orthogonal polynomials”, J. Phys. A, 34 (2001), 4353–4376 | DOI | MR | Zbl

[42] V. V. Borzov, “Orthogonal polynomials and generalized oscillator algebras”, Integral Transf. Special Funct., 12:2 (2001), 115–138 ; arXiv: /math.CA/0002226 | DOI | MR | Zbl

[43] V. V. Borzov, E. V. Damaskinsky, “Realization of the annihilation operator for an oscillator-like system by a differential operator and Hermite–Chihara polynomials”, Integral Transforms and Special Functions, 13 (2002), 547–554 ; arXiv: /math.QA/0101215 | DOI | MR | Zbl

[44] E. V. Damaskinskii, P. P. Kulish, “Deformirovannye ostsillyatory i ikh prilozheniya”, Zap. nauchn. semin. LOMI, 189, 1991, 39–74

[45] R. Koekoek, R. F. Swarttouw, The Askey sheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report No 94-05, Delft University of Technology, 1994 ; arXiv: /math.CA/9602214 | Zbl

[46] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 34, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[47] C. Berg, “On some indeterminate moment problems for measures on a geometric progression”, J. Comput. Appl. Math., 99 (1998), 67–75 ; http://www.elsevier.nl/locate/cam | DOI | MR | Zbl

[48] J. R. Klauder, K. A. Penson, J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems”, Phys. Rev., 64:1 (2001), 013817 | DOI | MR

[49] K. A. Penson, A. I. Solomon, “New generalized coherent states”, J. Phys. Rev., 40:5 (1999), 2354–2363 | MR | Zbl