On boundary controllability of dynamical system gouverned by the wave equation on a class of graphs (trees)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 23-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The boundary control problem for the wave equation on a planar graph consisting of strings of variable densities with Dirichlet control at the boundary vertices is considered. The exact controllability in $L_2$–classes of controls and states is established in the case that the grapf is a tree; a sharp estimate of the time of controllability is given.
@article{ZNSL_2004_308_a2,
     author = {M. I. Belishev},
     title = {On boundary controllability of dynamical system gouverned by the wave equation on a~class of graphs (trees)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--47},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - On boundary controllability of dynamical system gouverned by the wave equation on a class of graphs (trees)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 23
EP  - 47
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a2/
LA  - ru
ID  - ZNSL_2004_308_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T On boundary controllability of dynamical system gouverned by the wave equation on a class of graphs (trees)
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 23-47
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a2/
%G ru
%F ZNSL_2004_308_a2
M. I. Belishev. On boundary controllability of dynamical system gouverned by the wave equation on a class of graphs (trees). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 23-47. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a2/

[1] S. A. Avdonin, S. A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC-method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, Inverse problems on a class of graphs (trees) by the BC-method, PDMI PREPRINT–07/2003, June 23, 2003 | MR

[4] A. S. Blagovestchenskii, Inverse problems of wave processes, VSP, Nitherlands, 2001

[5] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i eë prilozheniya, Nauka, M., 1967 | MR

[6] J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modeling, Analysis, and Control of Dynamic Elastic Multi-Link Structures, Burkhausser, Boston–Basel–Berlin, 1994 | MR

[7] G. Leugering, E. Zuazua, “On exact controllability of generic trees”, Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy, 1999), ESAIM Proc., 8, Soc. Math. Appl. Indust., Paris, 2000, 95–105 | MR