The gauge related deformations of the ordinary linear differential operators with constant coefficients
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 235-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The relations between coefficients of gauge related deformations and solutions of some system of ordinary non-linear differential equations are studied. These coefficients are found in the explicit form.
@article{ZNSL_2004_308_a13,
     author = {S. P. Khekalo},
     title = {The gauge related deformations of the ordinary linear differential operators with constant coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {235--251},
     year = {2004},
     volume = {308},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a13/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - The gauge related deformations of the ordinary linear differential operators with constant coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 235
EP  - 251
VL  - 308
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a13/
LA  - ru
ID  - ZNSL_2004_308_a13
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T The gauge related deformations of the ordinary linear differential operators with constant coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 235-251
%V 308
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a13/
%G ru
%F ZNSL_2004_308_a13
S. P. Khekalo. The gauge related deformations of the ordinary linear differential operators with constant coefficients. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 235-251. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a13/

[1] Y. Berest, Y. Molchanov, “Fundamental solution for partial differential equations with reflection group invariance”, J. Math. Phis., 36(8) (1995), 4324–4339 | DOI | MR | Zbl

[2] Yu. Yu. Berest, A. P. Veselov, “Printsip Gyuigensa i integriruemost”, UMN, 49:6(300) (1994), 8–78 | MR

[3] Y. Berest, “Hierarchies of Huygens' Operators and Hadamard's Conjecture”, Acta Appl. Math., 53 (1998), 125–185 | DOI | MR | Zbl

[4] Y. Berest, “Solution of a restricted Hadamard Problem on Minkowski Spaces”, Comm. Pure. Appl. Math., 50 (1997), 1019–1052 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Y. Y. Berest, I. M. Loutsenko, “Huygens' Principle in Minkowski Spaces and Soliton Solutions of the Korteweg–de Vries Equation”, Commun. Math. Phys., 190 (1997), 113–132 | DOI | MR | Zbl

[6] Y. Berest, “The problem of lacunas and analysis on root systems”, Trans. Amer. Math. Soc., 352:8 (2000), 3743–3776 | DOI | MR | Zbl

[7] G. Wilson, “Bispectral commutative ordinary differential operators”, J. Reine Angew. Math., 442 (1993), 177–204 | DOI | MR | Zbl

[8] S. P. Khekalo, “Fundamentalnoe reshenie iterirovannogo operatora tipa Keli–Gordinga”, UMN, 55:3 (2000), 191–192 | MR | Zbl

[9] A. I. Komech, “Lineinye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Itogi nauki i tekhniki, Sovr. probl. mat., Fundament. napravl., 31, 1988, 127–261 | MR

[10] S. P. Khekalo, “Kalibrovochnaya ekvivalentnost differentsialnykh operatorov v chastnykh proizvodnykh”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov, Suzdal, 2002, 138–140

[11] K. L. Stellmacher, “Ein Beispeil einer Huygennchen differentialgleichung”, Nachr. Akad. Wiss., Gottingen Math. Phis. Kl. Pa., 10 (1953), 133–138 | MR

[12] S. Khekalo, “The gauge relation of differential operators and Huygens' principle”, Day on Diffraction, Saint-Petersburg, 2002, 32–34

[13] G. P. Gavrilov, A. A. Sapozhenko, Sbornik zadach po diskretnoi matematike, Nauka, M., 1977 | MR

[14] S. P. Khekalo, “Izogyuigensovy deformatsii odnorodnykh differentsialnykh operatorov, svyazannykh so spetsialnym konusom ranga tri”, Matem. zametki, 70:6 (2001), 927–940 | MR | Zbl