On $PC$-ansatz
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 9-22

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of the paper is detailed consideration of known from seventies ansatz: $$ e^{\operatorname{i}kl(x)}[AD_p(\sqrt{k}e^{-\frac\pi4}m(x))+ k^{-\frac12}e^{\frac\pi4}BD_p^\prime(\sqrt{k}e^{-\frac\pi4}m(x))], $$ where $A$ and $B$ are series: $$ A=\sum_{s=0}^\infty\frac{A_s(x)}{(\operatorname{i}k)^s};\quad B=\sum_{s=0}^\infty\frac{B_s(x)}{(\operatorname{i}k)^s}. $$ Here $D_p$ are parabolic cylinder functions. Analytical expressions in the first approximation for wave field in the penumbra of the wave reflected by impedance or transparent cone were obtained.
@article{ZNSL_2004_308_a1,
     author = {V. M. Babich},
     title = {On $PC$-ansatz},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--22},
     publisher = {mathdoc},
     volume = {308},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On $PC$-ansatz
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 9
EP  - 22
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a1/
LA  - ru
ID  - ZNSL_2004_308_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T On $PC$-ansatz
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 9-22
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a1/
%G ru
%F ZNSL_2004_308_a1
V. M. Babich. On $PC$-ansatz. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 33, Tome 308 (2004), pp. 9-22. http://geodesic.mathdoc.fr/item/ZNSL_2004_308_a1/