Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via les idées de Tsirelson (Probability spaces with filtrations: from Vershik's theory to the Brownian motion via Tsirelson's ideas)
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 236-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is a survey of the recent literature on the probabilistic theory of filtrations related to the notion of standard filtration (due to Vershik) and cozy filtration (due to Tsirelson), as well as applications of these notions for construction of probability spaces with filtrations that can be thought to be Brownian, but are not.
@article{ZNSL_2004_307_a7,
     author = {M. \'Emery},
     title = {Espaces probabilis\'es filtr\'es: de la th\'eorie de {Vershik} au mouvement brownien, via les id\'ees de {Tsirelson} {(Probability} spaces with filtrations: from {Vershik's} theory to the {Brownian} motion via {Tsirelson's} ideas)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--265},
     year = {2004},
     volume = {307},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a7/}
}
TY  - JOUR
AU  - M. Émery
TI  - Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via les idées de Tsirelson (Probability spaces with filtrations: from Vershik's theory to the Brownian motion via Tsirelson's ideas)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 236
EP  - 265
VL  - 307
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a7/
LA  - ru
ID  - ZNSL_2004_307_a7
ER  - 
%0 Journal Article
%A M. Émery
%T Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via les idées de Tsirelson (Probability spaces with filtrations: from Vershik's theory to the Brownian motion via Tsirelson's ideas)
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 236-265
%V 307
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a7/
%G ru
%F ZNSL_2004_307_a7
M. Émery. Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via les idées de Tsirelson (Probability spaces with filtrations: from Vershik's theory to the Brownian motion via Tsirelson's ideas). Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 236-265. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a7/

[1] M. Arnaudon, “La filtration du mouvement brownien indexé par $\mathbb R$ dans une variété compacte”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 304–314 | MR | Zbl

[2] M. Barlow, M. Émery, F. Knight, S. Song, M. Yor, “Autour d'un théorème de Tsirelson sur les filtrations browniennes et non browniennes”, Séminaire de Probabilités XXXII, Lect. Notes Math., 1686, 1998, 264–305 | MR | Zbl

[3] M. Barlow, J. Pitman, M. Yor, “On Walsh's Brownian motions”, Séminaire de Probabilités XXIII, Lect. Notes Math., 1372, 1989, 275–293 | DOI | MR | Zbl

[4] S. Beghdadi-Sakrani, M.Émery, “On certain probabilities equivalent to coin-tossing, d'après Schachermayer”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 240–256 | MR | Zbl

[5] C. Bishop, “A characterization of Poissonian domains”, Ark. Mat., 29 (1991), 1–24 | DOI | MR | Zbl

[6] B. de Meyer, “Une simplification de l'argument de Tsirelson sur le caractère non-brownien des processus de Walsh”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 217–220 | MR | Zbl

[7] P. Diaconis, “From shuffling cards to walking around the building: an introduction to modern Markov chain theory”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., 1998 Extra Vol. I, 187–204 (electronic) | MR | Zbl

[8] L. Dubins, J. Feldman, M. Smorodinsky, B. Tsirelson, “Decreasing sequences of $\sigma$-fields and a measure change for Brownian motion”, Ann. Prob., 24 (1996), 882–904 | DOI | MR | Zbl

[9] M. Émery, W. Schachermayer, “Brownian filtrations are not stable under equivalent time-changes”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 267–276 | MR | Zbl

[10] M. Émery, W. Schachermayer, “A remark on Tsirelson's stochastic differential equation”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 291–303 | MR | Zbl

[11] M.Émery, W.Schachermayer, “On Vershik's standardness criterion and Tsirelson's notion of cosiness”, Séminaire de Probabilités XXXV, Lect. Notes Math., 1755, 2001, 265–305 | MR | Zbl

[12] M. Émery, M. Yor, “Sur un théorème de Tsirelson relatif à des mouvements browniens corrélés et à la nullité de certains temps locaux”, Séminaire de Probabilités XXXII, Lect. Notes Math., 1686, 1998, 306–312 | MR | Zbl

[13] J. Feldman, M. Smorodinsky, “Decreasing sequences of measurable partitions: product type, standard, and prestandard”, Ergodic Theory and Dynamical Systems, 20 (2000), 1079–1090 | DOI | MR | Zbl

[14] J. Feldman, B. Tsirelson, “Decreasing sequences of $\sigma$-fields and a measure change for Brownian motion, II”, Ann. Prob., 24 (1996), 905–911 | DOI | MR | Zbl

[15] D. Heicklen, C. Hoffman, “$T,T^{-1}$ is not standard”, Ergodic Theory Dynam. Systems, 18 (1998), 875–878 | DOI | MR | Zbl

[16] T. Lindvall, Lectures on the Coupling Method, John Wiley, New York, 1992 | MR

[17] M. Malric, “Filtrations quotients de la filtration brownienne”, Séminaire de Probabilités XXXV, Lect. Notes Math., 1755, 2001, 260–264 | MR | Zbl

[18] W. Schachermayer, “On certain probabilities equivalent to Wiener measures, d'après Dubins, Feldman, Smorodinsky and Tsirelson”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 221–239 | MR | Zbl

[19] M. Smorodinsky, “Processes with no standard extension”, Israel J. Math., 107 (1998), 327–331 | DOI | MR | Zbl

[20] B. Tsirelson, “Triple points: From non-Brownian filtrations to harmonic measures”, Geom. Funct. Anal, 7 (1997), 1096–1142 | DOI | MR | Zbl

[21] B. Tsirelson, “Within and beyond the reach of Brownian innovation”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., 1998 Extra Vol. I, 311–320 | MR | Zbl

[22] B. Tsirelson, Toward stochastic analysis beyond the white noise, http://www.math.tau.ac.il/

[23] B. Tsirelson, Noise sensitivity on continuous products: an answer to an old question of J. Feldman, http://www.math.tau.ac.il/

[24] A. M. Vershik, Approksimatsiya v teorii mery, Doktorskaya dissertatsiya, Leningrad, 1973; “Теория убывающих последовательностей измеримых разбиений”, Алгебра и анализ, 6:4 (1994), 1–68 | MR | Zbl

[25] J. Warren, “On the joining of sticky Brownian motion”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 257–266 | MR | Zbl

[26] S. Watanabe, “The existence of a multiple spider martingale in the natural filtration of a certain diffusion in the plane”, Séminaire de Probabilités XXXIII, Lect. Notes Math., 1709, 1999, 277–290 | MR | Zbl

[27] M. Yor, “Sur l'étude des martingales continues extrémales”, Stochastics, 2 (1979), 191–196 ; Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems, Birkhäuser, Basel, 1997 | MR | Zbl | MR