Explicit equivalence bimodules for rotation algebras
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 175-188

Voir la notice de l'article provenant de la source Math-Net.Ru

$C^*$-algebras associated with irrational rotations are Morita equivalent iff the rotation parameters belong to the same orbit under the action of $GL(2,Z)$. In this note we offer explicit type II representations such that the bimodule is dense in the corresponding Hilbert space.
@article{ZNSL_2004_307_a5,
     author = {H. Narnhofer},
     title = {Explicit equivalence bimodules for rotation algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {307},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a5/}
}
TY  - JOUR
AU  - H. Narnhofer
TI  - Explicit equivalence bimodules for rotation algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 175
EP  - 188
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a5/
LA  - en
ID  - ZNSL_2004_307_a5
ER  - 
%0 Journal Article
%A H. Narnhofer
%T Explicit equivalence bimodules for rotation algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 175-188
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a5/
%G en
%F ZNSL_2004_307_a5
H. Narnhofer. Explicit equivalence bimodules for rotation algebras. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 175-188. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a5/