Interpolation analogues of Schur $Q$-functions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 99-119
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce interpolation analogues of the Schur $Q$-functions – the multiparameter Schur $Q$-functions. We obtain for them several results: a combinatorial formula, generating functions for one-row and two-rows functions, vanishing and characterization properties, a Pieri-type formula, a Nimmo-type formula (a relation of two Pfaffians), a Giambelli–Schur-type Pfaffian formula, a determinantal formula for the transition coefficients between multiparameter Schur $Q$-functions with different parameters. We write an explicit Pfaffian expression for the dimension of a skew shifted Young diagram. This paper is a continuation of the author's paper math.CO/0303169 and is a partial projective analogue of the paper q-alg/9605042 by A. Okounkov and G. Olshanski, and of the paper math.CO/0110077 by G. Olshanski, A. Regev, and A. Vershik.
@article{ZNSL_2004_307_a2,
author = {V. N. Ivanov},
title = {Interpolation analogues of {Schur} $Q$-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {99--119},
publisher = {mathdoc},
volume = {307},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a2/}
}
V. N. Ivanov. Interpolation analogues of Schur $Q$-functions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 99-119. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a2/