@article{ZNSL_2004_307_a1,
author = {A. M. Vershik and A. Yu. Okounkov},
title = {A~new approach to the representation theory of the symmetric {groups.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--98},
year = {2004},
volume = {307},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a1/}
}
A. M. Vershik; A. Yu. Okounkov. A new approach to the representation theory of the symmetric groups. II. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 57-98. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a1/
[1] G. Veil, Klassicheskie gruppy. Ikh invarianty i predstavleniya, Gos. izd. inostr. lit., M., 1947
[2] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatora sdviga i operatory umnozheniya”, DAN SSSR, 259:3 (1981), 526–529, dobavlena pri perevode | MR | Zbl
[3] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR
[4] A. M. Vershik, A. Yu. Okunkov, “Induktivnyi podkhod k postroeniyu teorii predstavlenii simmetricheskikh grupp”, UMN, 51:2 (1996), 153–154 | MR | Zbl
[5] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy unimodulyarnykh matrits”, DAN SSSR, 71 (1950), 825–828
[6] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, DAN SSSR, 71 (1950), 1017–1020
[7] V. F. Molchanov, “O matrichnykh elementakh neprivodimykh predstavlenii simmetricheskoi gruppy”, Vestnik Mosk. univ., 1 (1966), 52–57 | Zbl
[8] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi simmetricheskoi gruppy”, Funkts. anal. i ego pril., 28:2 (1994), 31–40 | MR
[9] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. semin. POMI, 240, 1996, 166–228
[10] G. I. Olshanskii, “Rasshirenie algebry $U(\mathfrak g)$ dlya beskonechnomernykh klassicheskikh algebr Li $\mathfrak g$ i yangiany $Y(\mathfrak{gl}(m))$”, DAN SSSR, 297:5 (1987), 1050–1054 | MR
[11] G. I. Olshanskii, “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–209 | MR
[12] I. A. Pushkarev, “K teorii predstavlenii spletenii konechnykh grupp s simmetricheskimi gruppami”, Zap. nauchn. semin. POMI, 240, 1997, 229–244, dobavlena pri perevode | Zbl
[13] I. V. Cherednik, “O spetsialnykh bazisakh neprivodimykh predstavlenii vyrozhdennoi affinnoi algebry Gekke”, Funkts. anal. i ego pril., 20:1 (1986), 87–88 | MR | Zbl
[14] I. Cherednik, “A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras”, Invent. Math., 106:2 (1991), 411–431, dobavlena pri perevode | DOI | MR
[15] P. Diaconis, C. Greene, Applications of Murphy's elements, Stanford University Tech. Report, No 335, 1989
[16] V. Drinfeld, “Degenerated affine Hecke algebras and Yangians”, Funktsional. Anal. i Prilozhen., 20:1 (1986), 69–70 | MR | Zbl
[17] G. D. James, The Representation Theory of the Symmetric Group, Springer-Verlag, Berlin, 1978 ; G. Dzheims, Mir, 1982 | MR | MR | Zbl
[18] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, Mass., 1981 | MR
[19] A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Reports Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl
[20] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris Ser. I. Math., 316:8 (1993), 773–778 | MR | Zbl
[21] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math, 2004 (to appear) | MR | Zbl
[22] G. Lusztig, “Affine Hecke algebras and their graded version”, J. Amer. Math. Soc., 2:3 (1989), 599–635, dobavlena pri perevode | DOI | MR | Zbl
[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, New York, 1995 ; I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | Zbl | MR
[24] G. Murphy, “A new construction of Young's seminormal representation of the symmetric group”, J. Algebra, 69 (1981), 287–291 | DOI | MR
[25] M. L. Nazarov, “Projective representations of the infinite symmetric group”, Representation Theory and Dynamical Systems, Adv. Soviet Math., 9, ed. A. Vershik, Amer. Math. Soc., Providence, RI, 1992, dobavlena pri perevode | MR
[26] M. Nazarov, “Young's orthogonal form for Brauer's centralizer algebra”, J. Algebra, 182:3 (1996), 664–693 | DOI | MR | Zbl
[27] A. Okounkov, “Young basis, Wick formula, and higher Capelli identities”, Internat. Math. Res. Notices, 17 (1996), 817–839 | DOI | MR | Zbl
[28] A. Ram, “Seminormal representations of Weyl groups and Iwahori–Hecke algebras”, Proc. London Math. Soc. (3), 75 (1997), 99–133 | DOI | MR | Zbl
[29] J. D. Rogawski, “On modules over the Hecke algebra of a $p$-adic group”, Invent. Math., 79:3 (1985), 443–465, dobavlena pri perevode | DOI | MR | Zbl
[30] A. Vershik, “Local algebras and a new version of Young's orthogonal form”, Topics in Algebra, Part 2, Banach Cent. Publ., 26, PWN, Warsaw, 1990, 467–473 | MR
[31] A. Vershik, “Local stationary algebras”, Amer. Math. Soc. Transl. (2), 148 (1991), 1–13 | MR | Zbl
[32] A. Vershik, “Asymptotic aspects of the representation theory of symmetric groups”, Selecta Math. Sov., 11:2 (1992), 159–180, rasshirennyi perevod poslesloviya k russkomu perevodu knigi [17] | MR
[33] A. M. Vershik (ed.), Asymptotic Combinatorics with Applications to Mathematical Physics, Springer-Verlag, Berlin–Heidelberg–New York, 2003, dobavlena pri perevode | MR
[34] A. M. Vershik, “Gelfand–Tsetlin algebras, expectations, inverse limits, Fourier analysis”, Unity of Mathematics, Conference dedicated to I. M. Gelfand (to appear) , dobavlena pri perevode
[35] S. K. Lando, A. K. Zvonkin, Graphs on Surfaces and Their Applications. Appendix by Don B. Zagier, Springer, Berlin, 2004, dobavlena pri perevode | MR | Zbl