Monotone nonincreasing random fields on posets. II. Probability distributions on polyhedral cones
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 5-56
Cet article a éte moissonné depuis la source Math-Net.Ru
In this part of the paper we investigate the structure of an arbitrary measure $\mu$ concentrated on a polyhedral cone $C$ in $\mathbf{R}^d$ in the case when the decumulative distribution function $g_\mu$ of the measure $\mu$ satisfies certain continuity conditions. If a face $\Gamma$ of the cone $C$ satisfies appropriate conditions, the restriction $\mu|_{\Gamma^{\operatorname{int}}}$ of the measure $\mu$ to the inner part of $\Gamma$ is proved to be absolutely continuous with respect to the Lebesgue measure $\lambda_\Gamma$ on the face $\Gamma$. Besides, the density of the measure $\mu|_{\Gamma^{\operatorname{int}}}$ is expressed as a derivative of the function $g_\mu$ multipied by a constant. This result was used in the first part of the paper to find the finite-dimensional distributions of a monotone random field on a poset.
@article{ZNSL_2004_307_a0,
author = {L. B. Beinenson},
title = {Monotone nonincreasing random fields on posets. {II.~Probability} distributions on polyhedral cones},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--56},
year = {2004},
volume = {307},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a0/}
}
L. B. Beinenson. Monotone nonincreasing random fields on posets. II. Probability distributions on polyhedral cones. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 5-56. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a0/
[1] M. A. Antonets, I. A. Shereshevskii, “Bezgranichno delimye raspredeleniya veroyatnostei na reshetkakh”, Algebra i analiz, 5:6 (1993), 39–68 | MR | Zbl
[2] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR
[3] A. Brensted, Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR
[4] V. A. Emelichev, M. M. Kovalev, M. K. Kravtsov, Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981 | MR
[5] A. Skhreiver, Teoriya lineinogo programmirovaniya i tselochislennogo lineinogo programmirovaniya, Mir, M., 1991
[6] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl