@article{ZNSL_2003_306_a9,
author = {V. N. Starovoitov},
title = {Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--209},
year = {2003},
volume = {306},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/}
}
TY - JOUR AU - V. N. Starovoitov TI - Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 199 EP - 209 VL - 306 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/ LA - ru ID - ZNSL_2003_306_a9 ER -
V. N. Starovoitov. Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 199-209. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/
[1] N. V. Yudakov, “Razreshimost zadachi o dvizhenii tverdogo tela v vyazkoi neszhimaemoi zhidkosti”, Dinamika sploshnoi sredy, 18, 1974, 249–253
[2] K.-H. Hoffmann, V. N. Starovoitov, On a motion of a solid body in a viscous fluid, Preprint M9617, Technische Universität München, 1996
[3] K.-H. Hoffmann, V. N. Starovoitov, “On a motion of a solid body in a viscous fluid. Two–dimensional case”, Adv. Math. Sci. Appl., 9:2 (1999), 633–648 | MR | Zbl
[4] G. P. Galdi, “On the steady self-propelled motion of a body in a viscous incompressible fluid”, Arch. Ration. Mech. Anal., 148:1 (1999), 53–88 | DOI | MR | Zbl
[5] B. Desjardins, M. J. Esteban, “Existence of weak solutions for the motion of rigid bodies in a viscous fluid”, Arch. Ration. Mech. Anal., 146:1 (1999), 59–71 | DOI | MR | Zbl
[6] K.-H. Hoffmann, V. N. Starovoitov, “Zur Bewegung einer Kugel in einer zähen Flüssigkeit”, Documenta Mathematica, 5 (2000), 15–21 | MR | Zbl
[7] V. N. Starovoitov, Neregulyarnye zadachi gidrodinamiki, Doktorskaya dissertatsiya, Novosibirskii gosudarstvennyi universitet, 2000
[8] C. Conca, J. A. San Martin, M. Tucsnak, “Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid”, Comm. Partial Differential Equations, 25:5–6 (2000), 1019–1042 | MR | Zbl
[9] M. D. Gunzburger, H.-C. Lee, G. Seregin, “Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions”, J. Math. Fluid Mech., 2:3 (2000), 219–266 | DOI | MR | Zbl
[10] J. A. San Martin, V. N. Starovoitov, M. Tucsnak, “Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid”, Arch. Ration. Mech. Anal., 161:2 (2002), 113–147 | DOI | MR | Zbl
[11] V. N. Starovoitov, “Behavior of a rigid body in an incompressible viscous fluid near a boundary”, Free boundary problems: theory and applications, Proceedings of the International Conference (Trento, Italy, 2002) (to appear)
[12] E. Feireisl, “On the motion of rigid bodies in a viscous fluid”, Applications of Mathematics, 47:6 (2002), 463–484 | DOI | MR | Zbl
[13] T. Takahashi, “Existence of strong solutions for the problem of a rigid–fluid system”, C. R. Acad.Sci.Paris, Ser. I, 336:5 (2003), 453–458 | MR | Zbl
[14] R. Temam, Problèmes mathématiques en plasticité, Méthodes Mathématiques de l'Informatique, 12, Gauthier-Villars, Montrouge, 1983 | MR | Zbl
[15] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR