Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 199-209
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the investigation of the problem on a motion of a rigid body in a viscous incompressible fluid. It is proved that there exist at least two weak solutions of this problem, if the collisions of the body with the boundary of the flow domain are allowed. These solutions have different behavior of the body after the collision. Namely, for the first solution, the body goes away from the boundary after the collision. In the second solution, the body and the boundary remain in contact.
@article{ZNSL_2003_306_a9,
author = {V. N. Starovoitov},
title = {Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--209},
publisher = {mathdoc},
volume = {306},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/}
}
TY - JOUR AU - V. N. Starovoitov TI - Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 199 EP - 209 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/ LA - ru ID - ZNSL_2003_306_a9 ER -
%0 Journal Article %A V. N. Starovoitov %T Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 199-209 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/ %G ru %F ZNSL_2003_306_a9
V. N. Starovoitov. Non-uniqueness of the solution to the problem of a~motion of a~rigid body in a~viscous incompressible fluid. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 199-209. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a9/