On smoothness of suitable weak solutions to the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two sufficient conditions for local regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. One of them implies smoothness of $L_{3,\infty}$-solutions as a particular case.
@article{ZNSL_2003_306_a8,
     author = {G. A. Seregin and V. \v{S}verak},
     title = {On smoothness of suitable weak solutions to the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--198},
     publisher = {mathdoc},
     volume = {306},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
AU  - V. Šverak
TI  - On smoothness of suitable weak solutions to the Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 186
EP  - 198
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/
LA  - en
ID  - ZNSL_2003_306_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%A V. Šverak
%T On smoothness of suitable weak solutions to the Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 186-198
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/
%G en
%F ZNSL_2003_306_a8
G. A. Seregin; V. Šverak. On smoothness of suitable weak solutions to the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/