On smoothness of suitable weak solutions to the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove two sufficient conditions for local regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. One of them implies smoothness of $L_{3,\infty}$-solutions as a particular case.
@article{ZNSL_2003_306_a8,
     author = {G. A. Seregin and V. \v{S}verak},
     title = {On smoothness of suitable weak solutions to the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--198},
     year = {2003},
     volume = {306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
AU  - V. Šverak
TI  - On smoothness of suitable weak solutions to the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 186
EP  - 198
VL  - 306
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/
LA  - en
ID  - ZNSL_2003_306_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%A V. Šverak
%T On smoothness of suitable weak solutions to the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 186-198
%V 306
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/
%G en
%F ZNSL_2003_306_a8
G. A. Seregin; V. Šverak. On smoothness of suitable weak solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/

[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] L. Escauriaza, G. Seregin, V. Šverák, “On backward uniqueness for parabolic equations”, Zap. Nauchn. Seminar. POMI, 288, 2002, 100–103 | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Šverák, “On backward uniqueness for parabolic equations”, Arch. Ration. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[4] L. Escauriaza, G. Seregin, V. Šverák, “Backward uniqueness for the heat operator in half space”, Algebra and Analyis, 15:1 (2003), 201–214 | MR | Zbl

[5] L. Escauriaza, G. Seregin, V. Šverák, “On $L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Usp. Matem. Nauk, 58:2(350) (2003), 3–44 | MR

[6] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[7] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Commun. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[9] G. A. Seregin, “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl

[10] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[11] G. A. Seregin, “Differentiability properties of weak solutions to the Navier–Stokes equations”, Algebra and Analysis, 14:1 (2002), 194–237 | MR | Zbl

[12] G. Seregin, V. Šverák, “The Navier–Stokes equations and backward uniqueness”, Nonlinear Problems in Mathematical Physics, II In Honor of Professor O. A. Ladyzhenskaya, Int. Math. Ser., 2, Kluwer Academic Publishers, New York, 2002, 359–370 | MR