@article{ZNSL_2003_306_a8,
author = {G. A. Seregin and V. \v{S}verak},
title = {On smoothness of suitable weak solutions to the {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--198},
year = {2003},
volume = {306},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/}
}
G. A. Seregin; V. Šverak. On smoothness of suitable weak solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/
[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] L. Escauriaza, G. Seregin, V. Šverák, “On backward uniqueness for parabolic equations”, Zap. Nauchn. Seminar. POMI, 288, 2002, 100–103 | MR | Zbl
[3] L. Escauriaza, G. Seregin, V. Šverák, “On backward uniqueness for parabolic equations”, Arch. Ration. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl
[4] L. Escauriaza, G. Seregin, V. Šverák, “Backward uniqueness for the heat operator in half space”, Algebra and Analyis, 15:1 (2003), 201–214 | MR | Zbl
[5] L. Escauriaza, G. Seregin, V. Šverák, “On $L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Usp. Matem. Nauk, 58:2(350) (2003), 3–44 | MR
[6] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl
[7] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Commun. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl
[9] G. A. Seregin, “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl
[10] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[11] G. A. Seregin, “Differentiability properties of weak solutions to the Navier–Stokes equations”, Algebra and Analysis, 14:1 (2002), 194–237 | MR | Zbl
[12] G. Seregin, V. Šverák, “The Navier–Stokes equations and backward uniqueness”, Nonlinear Problems in Mathematical Physics, II In Honor of Professor O. A. Ladyzhenskaya, Int. Math. Ser., 2, Kluwer Academic Publishers, New York, 2002, 359–370 | MR