On smoothness of suitable weak solutions to the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove two sufficient conditions for local regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. One of them implies smoothness of $L_{3,\infty}$-solutions as a particular case.
@article{ZNSL_2003_306_a8,
author = {G. A. Seregin and V. \v{S}verak},
title = {On smoothness of suitable weak solutions to the {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--198},
publisher = {mathdoc},
volume = {306},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/}
}
G. A. Seregin; V. Šverak. On smoothness of suitable weak solutions to the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 186-198. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a8/