Capillary/gravity film flows on the surface of a~rotating cylinder
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 165-185

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive the equations describing the motion of a viscous incompressible capillary film on the surface of a rotating cylinder in the transversal gravity field. As a result, we obtain the equation for the film thickness, which has a fourth order in two space variables and a first order in time. We study both space periodic solutions in the axial coordinate and localized solutions of this equation in the stationary case. The stability of stationary solutions is discussed also. Analysis of the one-dimensional problem shows that its solution strongly depends on Galileo number and it does not exist if this number is large.
@article{ZNSL_2003_306_a7,
     author = {V. V. Pukhnachov},
     title = {Capillary/gravity film flows on the surface of a~rotating cylinder},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--185},
     publisher = {mathdoc},
     volume = {306},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/}
}
TY  - JOUR
AU  - V. V. Pukhnachov
TI  - Capillary/gravity film flows on the surface of a~rotating cylinder
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 165
EP  - 185
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/
LA  - en
ID  - ZNSL_2003_306_a7
ER  - 
%0 Journal Article
%A V. V. Pukhnachov
%T Capillary/gravity film flows on the surface of a~rotating cylinder
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 165-185
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/
%G en
%F ZNSL_2003_306_a7
V. V. Pukhnachov. Capillary/gravity film flows on the surface of a~rotating cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 165-185. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/