Capillary/gravity film flows on the surface of a rotating cylinder
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 165-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive the equations describing the motion of a viscous incompressible capillary film on the surface of a rotating cylinder in the transversal gravity field. As a result, we obtain the equation for the film thickness, which has a fourth order in two space variables and a first order in time. We study both space periodic solutions in the axial coordinate and localized solutions of this equation in the stationary case. The stability of stationary solutions is discussed also. Analysis of the one-dimensional problem shows that its solution strongly depends on Galileo number and it does not exist if this number is large.
@article{ZNSL_2003_306_a7,
     author = {V. V. Pukhnachov},
     title = {Capillary/gravity film flows on the surface of a~rotating cylinder},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--185},
     year = {2003},
     volume = {306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/}
}
TY  - JOUR
AU  - V. V. Pukhnachov
TI  - Capillary/gravity film flows on the surface of a rotating cylinder
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 165
EP  - 185
VL  - 306
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/
LA  - en
ID  - ZNSL_2003_306_a7
ER  - 
%0 Journal Article
%A V. V. Pukhnachov
%T Capillary/gravity film flows on the surface of a rotating cylinder
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 165-185
%V 306
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/
%G en
%F ZNSL_2003_306_a7
V. V. Pukhnachov. Capillary/gravity film flows on the surface of a rotating cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 165-185. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a7/

[1] V. V. Pukhnachov, “Motion of a liquid film on the surface of a rotating cylinder in a gravitational field”, Z. Prikl. Mekh. Tekh. Fiz., 3 (1977), 78–88

[2] H. K. Moffatt, “Behaviour of a viscous film on the outer surface of a rotating cylinder”, J. Mec., 187 (1977), 651–673

[3] E. B. Hansen, M. A. Kelmanson, “Steady, viscous, free-surface flow on a rotating cylinder”, J. Fluid Mech., 272 (1994), 91–107 | DOI | MR | Zbl

[4] R. C. Petersen, P. K. Jimack, M. A. Kelmanson, “On the stability of viscous free-surface flow supported by a rotating cylinder”, Proc. R. Soc. Lond. A, 457 (2001), 1427–1445 | DOI | MR

[5] E. J. Hinch, M. A. Kelmanson, “On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder”, Proc. R. Soc. Lond. A, 459 (2003), 1193–1213 | DOI | MR | Zbl

[6] V. A. Solonnikov, “On the transient motion of an isolated volume of viscous incompressible fluid”, Izv. Akad. Nauk SSSR, ser. Matem., 51:2 (1987), 1065–1087 | MR | Zbl

[7] V. A. Solonnikov, “Solvability of the problem on evolution of a viscous incompressible liquid bounded by a free surface on a finite time interval”, Algebra Analiz, 3:1 (1991), 222–257 | MR | Zbl

[8] V. V. Pukhnachov, “Two methods of approximate description of steady-state motion of a viscous incompressible liquid with a free surface”, Z. Prikl. Mekh. Tekh. Fiz., 5 (1972), 126–134

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968 | Zbl

[10] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford etc., 1982 | MR | Zbl

[11] Chia-shun Yih, “Instability of a rotating film with a free surface”, Proc. R. Soc. Lond. A, 258 (1960), 63–69 | DOI | MR

[12] B. V. Loginov, “A supplement to the paper by L. A. Slobozhanin “To one problem of branching of the cylindrical equilibrium state of a rotating fluid””, Math. Phys. and Funct. Anal., 3 (1972), 52–55 | MR

[13] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Com., New York etc., 1955 | MR | Zbl

[14] S. J. Chapman, Private communication, 2003

[15] P. Howell, Private communication, 2003