On a~steady three-dimensional noncompact free boundary value problem for the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 134-164
Voir la notice de l'article provenant de la source Math-Net.Ru
A steady three-dimensional flow of a viscous incompressible fluid with a noncompact free boundary above a fixed unbounded bottom is studied. It is assumed that the motion of the fluid is generated by sources and sinks situated in a bounded part of the bottom and having zero total flux. The existence for small data of the unique solution to this problem is proved and the asymptotics of the solution is constructed.
@article{ZNSL_2003_306_a6,
author = {K. I. Pileckas and L. Zaleskis},
title = {On a~steady three-dimensional noncompact free boundary value problem for the {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--164},
publisher = {mathdoc},
volume = {306},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a6/}
}
TY - JOUR AU - K. I. Pileckas AU - L. Zaleskis TI - On a~steady three-dimensional noncompact free boundary value problem for the Navier--Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 134 EP - 164 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a6/ LA - en ID - ZNSL_2003_306_a6 ER -
%0 Journal Article %A K. I. Pileckas %A L. Zaleskis %T On a~steady three-dimensional noncompact free boundary value problem for the Navier--Stokes equations %J Zapiski Nauchnykh Seminarov POMI %D 2003 %P 134-164 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a6/ %G en %F ZNSL_2003_306_a6
K. I. Pileckas; L. Zaleskis. On a~steady three-dimensional noncompact free boundary value problem for the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 134-164. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a6/