The pressure stabilization method for steady viscous flows in a system of pipes
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 107-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with a singular perturbation of the stationary Stokes and Navier–Stokes system. Thereby the term $\varepsilon^2 \Delta p$ is added to the continuity equation, where $\varepsilon$ is small parameter. For a domain with cylindrical outlets to infinity and exponentially decaying data, existence and uniqueness of solutions under flux conditions at infinity are shown for the linear problem, and for the nonlinear problem in the case of small data. Asymptotically precise estimates are proved, as $\varepsilon$ tends to zero. For sufficiently regular data, they lead to convergence in $H^{5/2-\delta}_\mathrm{loc}$ for the velocity parts and in $H^{3/2-\delta}_\mathrm{loc}$ for the pressure parts, respectively.
@article{ZNSL_2003_306_a5,
     author = {S. A. Nazarov and M. Specovius-Neugebauer},
     title = {The pressure stabilization method for steady viscous flows in a~system of pipes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--133},
     year = {2003},
     volume = {306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. Specovius-Neugebauer
TI  - The pressure stabilization method for steady viscous flows in a system of pipes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 107
EP  - 133
VL  - 306
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a5/
LA  - en
ID  - ZNSL_2003_306_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. Specovius-Neugebauer
%T The pressure stabilization method for steady viscous flows in a system of pipes
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 107-133
%V 306
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a5/
%G en
%F ZNSL_2003_306_a5
S. A. Nazarov; M. Specovius-Neugebauer. The pressure stabilization method for steady viscous flows in a system of pipes. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 107-133. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a5/

[1] L. Cattabriga, “Su un problema al contorno relativo al sistema di equazioni di Stokes”, Sem. Mat. Univ. Padova, 31 (1964), 308–340 | MR

[2] M. Franta, J. Malek, K. R. Rajagopal, On steady flows of fluids with pressure and shear dependent viscosities, Preprint Prague, 2003 | MR

[3] C. B. jr. Morrey, Multiple integrals in the calculus of variations, Springer Verlag, Berlin, 1966 | MR | Zbl

[4] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon Breach, New York, 1966 | MR

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, “Determination of the solutions of boundary value problems for stationary Stokes and Navier–Stokes equations having an unbounded Dirichlet integral”, J. Sov. Math., 21 (1983), 728–761 | DOI | Zbl

[6] J. L. Lions, E. Magenes, Nonhomogeneous boundary value problems and applications, V. I, Springer-Verlag, Berlin, 1972

[7] S. A. Nazarov, “Vishik–Lyusternik method for elliptic boundary-value problems in regions with conical points. 1: The problem in a cone”, Sibirsk. Mat. Zh., 22:4 (1981), 142–163 | MR | Zbl

[8] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Quaderni di matematica, 4 (1999), 141–243 | MR | Zbl

[9] S. A. Nazarov, M. Specovius-Neugebauer, Optimal results for the Brezzi–Pitkäranta approximation of viscous flow problems, Preprint, Kassel, 2003 | MR

[10] K. I. Piletskas, V. A. Solonnikov, “Stationary Stokes and Navier-Stokes systems in an infinite open channel, I”, Lith. Math. J., 29:1 (1989), 34–47 | DOI | MR

[11] A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations, Teubner Verlag, Stuttgart, 1997 | MR | Zbl

[12] H. Sohr, The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001 | MR | Zbl

[13] V. A. Solonnikov, “On solutions of the stationary system of Navier–Stokes equations which have an infinite Dirichlet integral”, Zap. Nauchn. Semin. LOMI, 115, 1982, 251–263 | MR | Zbl

[14] V. A. Solonnikov, “Boundary and initial-boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries”, Mathematical topics in fluid mechanics, Proceedings of the summer course (Lisbon, Portugal, September 9–13, 1991), Pitman Res. Notes Math. Ser., 274, eds. J. F. Rodrigues et al., Longman Scientific Technical, Harlow, Essex, 1993, 117–162 | MR | Zbl

[15] V. A. Solonnikov, V. E. Scadilov, “On a boundary value problem for a stationary system of Navier–Stokes equations”, Proc. Steklov Inst. Math., 125, 1973, 186–199 | MR | Zbl

[16] R. Temam, Navier Stokes Equations, North Holland PC, Amsterdam, 1977 | MR

[17] Ya. A. Ro\v{i}tberg, Elliptic boundary value problems in the spaces of distributions, Kluwer Academic publishers, Dordrecht, 1996 | MR