On a constraction of basises in spaces of solenoidal vector-valued fields
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 92-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is given a construction of fundamental systems in the space $H(\Omega)\subset\overset{\circ}W{}^1_2(\Omega)$ with the help of an arbitrery fundamental system in $\overset{\circ}W{}^1_2(\Omega)$.
@article{ZNSL_2003_306_a4,
     author = {O. A. Ladyzhenskaya},
     title = {On a~constraction of basises in spaces of solenoidal vector-valued fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--106},
     year = {2003},
     volume = {306},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a4/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
TI  - On a constraction of basises in spaces of solenoidal vector-valued fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 92
EP  - 106
VL  - 306
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a4/
LA  - ru
ID  - ZNSL_2003_306_a4
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%T On a constraction of basises in spaces of solenoidal vector-valued fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 92-106
%V 306
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a4/
%G ru
%F ZNSL_2003_306_a4
O. A. Ladyzhenskaya. On a constraction of basises in spaces of solenoidal vector-valued fields. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 92-106. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a4/

[1] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmat.-giz., M., 1961; второе издание, Наука, М., 1970

[2] O. A. Ladyzhenskaya, V. A. Solonnikov, “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zap. nauchn. semin. LOMI, 59, 1976, 81–116 | Zbl

[3] L. V. Kapitanskii, K. I. Pileskas, “O nekotorykh zadachakh vektornogo analiza”, Zap. nauchn. semin. LOMI, 138, 1984, 65–85 | MR | Zbl

[4] M. E. Bogovskii, “Reshenie nekotorykh zadach vektornogo analiza s operatorami $\operatorname{Div}$ i $\operatorname{Grad}$”, Trudy semin. S. L. Soboleva, 80, no. 1, AN SSSR, Sibirskoe Otdelenie matematiki, Novosibirsk, 1980, 5–40 | MR

[5] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations, VI, Springer-Verlag, 1994 | MR

[6] B. Dakoronya, “Suschestvovanie i regulyarnost reshenii $d\omega=f$ s granichnymi usloviyami Dirikhle”, Nelineinye zadachi matem. fiziki i smezhnye voprosy, I Mezhdunarodnaya matem. seriya 1 (mart 2002 g.), Kluwer Plenum Publ., 63–76

[7] V. N. Smirnov, Kurs vysshei matematiki, 5, GIFML, M., 1959

[8] A. P. Calderon, A. Zygmund, “On singular Integrals with variable kernels”, Applicable Analysis, 7 (1978), 221–238 | DOI | MR | Zbl

[9] E. Lib, M. Loss, Analiz, Nauchn. kniga, N., 1998