@article{ZNSL_2003_306_a3,
author = {L. Consiglieri and J.-F. Rodrigues and T. N. Shilkin},
title = {On the {Navier{\textendash}Stokes} equations with the energy-dependent nonlocal viscosities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--91},
year = {2003},
volume = {306},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a3/}
}
TY - JOUR AU - L. Consiglieri AU - J.-F. Rodrigues AU - T. N. Shilkin TI - On the Navier–Stokes equations with the energy-dependent nonlocal viscosities JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 71 EP - 91 VL - 306 UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a3/ LA - en ID - ZNSL_2003_306_a3 ER -
L. Consiglieri; J.-F. Rodrigues; T. N. Shilkin. On the Navier–Stokes equations with the energy-dependent nonlocal viscosities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 71-91. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a3/
[1] L. Consiglieri, J. F. Rodrigues, “On stationary flows with energy dependent nonlocal viscosities”, Zap. Nauchn. Semin. POMI, 295, 2003, 99–117 | MR | Zbl
[2] D. Hilhorst, J. F. Rodrigues, “On a nonlocal diffusion equation with discontinuous reaction”, Adv. Diff. Eqs., 5:4–6 (2000), 657–680 | MR | Zbl
[3] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid, 2nd, Nauka, Moscow, 1970
[4] O. A. Ladyzhenskaya, “On new equations for the description of the motion of viscous incompressible fluids and on the solvability “in large” of some boundary-value problems for them”, Proceedings of Steklov Math. Inst., 102, 1967, 85–104 | MR | Zbl
[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI, 1967 | MR
[6] J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Nonlineaires, Gauthier-Villars, Paris, 1969 | MR | Zbl
[7] J. Simon, “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl., 146:4 (1987), 65–96 | MR | Zbl