Asymptotic modelling of a~piston with a~completely wetted surface
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 53-70
Voir la notice de l'article provenant de la source Math-Net.Ru
A quasi-stationary model is constructed for a lubricated piston by coupling a two-dimensional Reynolds equation with three-dimensional Navier–Stokes equations. This hybrid problem is shown to be well-posed in weighted Sobolev spaces with attached asymptotics.
@article{ZNSL_2003_306_a2,
author = {J. H. Videman and S. A. Nazarov and A. Sequeira},
title = {Asymptotic modelling of a~piston with a~completely wetted surface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--70},
publisher = {mathdoc},
volume = {306},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a2/}
}
TY - JOUR AU - J. H. Videman AU - S. A. Nazarov AU - A. Sequeira TI - Asymptotic modelling of a~piston with a~completely wetted surface JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 53 EP - 70 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a2/ LA - en ID - ZNSL_2003_306_a2 ER -
J. H. Videman; S. A. Nazarov; A. Sequeira. Asymptotic modelling of a~piston with a~completely wetted surface. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 53-70. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a2/