Nonautonomous parabolic equations involving measures
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 16-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the first part of this paper we study abstract parabolic evolution equations involving Banach space valued measures. These results are applied in the second part to second order parabolic systems under minimal regularity hypotheses on the coefficients.
@article{ZNSL_2003_306_a1,
     author = {H. Amann},
     title = {Nonautonomous parabolic equations involving measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--52},
     year = {2003},
     volume = {306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/}
}
TY  - JOUR
AU  - H. Amann
TI  - Nonautonomous parabolic equations involving measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 16
EP  - 52
VL  - 306
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/
LA  - en
ID  - ZNSL_2003_306_a1
ER  - 
%0 Journal Article
%A H. Amann
%T Nonautonomous parabolic equations involving measures
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 16-52
%V 306
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/
%G en
%F ZNSL_2003_306_a1
H. Amann. Nonautonomous parabolic equations involving measures. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 16-52. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/

[1] H. Amann, “Existence and regularity for semilinear parabolic evolution equations”, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 11 (1984), 593–676 | MR | Zbl

[2] H. Amann, “Dynamic theory of quasilinear parabolic equations. II: Reaction-diffusion systems”, Differential Integral Equations, 3:1 (1990), 13–75 | MR | Zbl

[3] H. Amann, “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | MR | Zbl

[4] H. Amann, Linear and quasilinear parabolic problems. V. I. Abstract linear theory, Monographs in Mathematics, 89, Birkhäuser Boston Inc., Boston, MA, 1995 | MR | Zbl

[5] H. Amann, “Linear parabolic problems involving measures”, Rev. R. Acad. Cien. Serie A. Mat. (RACSAM), 95 (2001), 85–119 | MR | Zbl

[6] H. Amann, Maximal regularity for nonautonomous evolution equations, Preprint, 2003 | MR

[7] H. Amann, “Maximum principles and principal eigenvalues”, 2003 (to appear) | MR

[8] H. Amann, M. Hieber, G. Simonett, “Bounded $H_\infty$-calculus for elliptic operators”, Diff. Int. Equ., 7 (1994), 613–653 | MR | Zbl

[9] H. Amann, P. Quittner, Control problems governed by semilinear parabolic equations with non-monotone nonlinearities and low regularity data, Preprint, 2003 | MR

[10] H. Amann, P. Quittner, “Semilinear parabolic equations involving measures and low-regularity data”, Trans. Amer. Math. Soc., 356 (2004), 1045–1119 | DOI | MR | Zbl

[11] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976 | MR | Zbl

[12] R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni, New thoughts on old results of R. T. Seeley, Preprint, 2003 | MR

[13] R. Denk, M. Hieber, J. Prüss, “$\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type”, Memoires Amer. Math. Soc., 2003 (to appear)

[14] G. Dore, “$L^p$ regularity for abstract differential equations”, Functional Analysis and Related Topics, Proceedings Kyoto 1991, Lecture Notes in Math., 1540, ed. H. Komatsu, Springer-Verlag, Berlin, 1993, 25–38 | MR | Zbl

[15] P. E. Sobolevskii, “Coerciveness inequalities for abstract parabolic equations”, Soviet Math. Doklady, 5 (1964), 894–897 | MR

[16] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978 | MR | Zbl