@article{ZNSL_2003_306_a1,
author = {H. Amann},
title = {Nonautonomous parabolic equations involving measures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--52},
year = {2003},
volume = {306},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/}
}
H. Amann. Nonautonomous parabolic equations involving measures. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 34, Tome 306 (2003), pp. 16-52. http://geodesic.mathdoc.fr/item/ZNSL_2003_306_a1/
[1] H. Amann, “Existence and regularity for semilinear parabolic evolution equations”, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 11 (1984), 593–676 | MR | Zbl
[2] H. Amann, “Dynamic theory of quasilinear parabolic equations. II: Reaction-diffusion systems”, Differential Integral Equations, 3:1 (1990), 13–75 | MR | Zbl
[3] H. Amann, “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | MR | Zbl
[4] H. Amann, Linear and quasilinear parabolic problems. V. I. Abstract linear theory, Monographs in Mathematics, 89, Birkhäuser Boston Inc., Boston, MA, 1995 | MR | Zbl
[5] H. Amann, “Linear parabolic problems involving measures”, Rev. R. Acad. Cien. Serie A. Mat. (RACSAM), 95 (2001), 85–119 | MR | Zbl
[6] H. Amann, Maximal regularity for nonautonomous evolution equations, Preprint, 2003 | MR
[7] H. Amann, “Maximum principles and principal eigenvalues”, 2003 (to appear) | MR
[8] H. Amann, M. Hieber, G. Simonett, “Bounded $H_\infty$-calculus for elliptic operators”, Diff. Int. Equ., 7 (1994), 613–653 | MR | Zbl
[9] H. Amann, P. Quittner, Control problems governed by semilinear parabolic equations with non-monotone nonlinearities and low regularity data, Preprint, 2003 | MR
[10] H. Amann, P. Quittner, “Semilinear parabolic equations involving measures and low-regularity data”, Trans. Amer. Math. Soc., 356 (2004), 1045–1119 | DOI | MR | Zbl
[11] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976 | MR | Zbl
[12] R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni, New thoughts on old results of R. T. Seeley, Preprint, 2003 | MR
[13] R. Denk, M. Hieber, J. Prüss, “$\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type”, Memoires Amer. Math. Soc., 2003 (to appear)
[14] G. Dore, “$L^p$ regularity for abstract differential equations”, Functional Analysis and Related Topics, Proceedings Kyoto 1991, Lecture Notes in Math., 1540, ed. H. Komatsu, Springer-Verlag, Berlin, 1993, 25–38 | MR | Zbl
[15] P. E. Sobolevskii, “Coerciveness inequalities for abstract parabolic equations”, Soviet Math. Doklady, 5 (1964), 894–897 | MR
[16] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978 | MR | Zbl