Some field embedding problem with cyclic kernel
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 144-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of embedding a quadratic extension of a number field into an extension with a cyclic 2-group is studied. A reduction theorem showing that, under the compatibility condition, an additional condition of embedding consists of the solvability of the problem with cyclic kernel of order 16 (of course, the degree of the desired field is no less than 16.) An additional condition of the embedding into a field of degree 16 is found; namely, the number generating the given quadratic extension must be a norm in the cyclotomic field containing the primitive roots of unity of eight degree. For $Q$, the condition of embedding is easier: all odd prime divisors of the generating element must be congruent with 1 modulo the order of the extension group. In addition, the quadratic extension must be real.
@article{ZNSL_2003_305_a8,
     author = {V. V. Ishkhanov and B. B. Lur'e},
     title = {Some field embedding problem with cyclic kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--152},
     publisher = {mathdoc},
     volume = {305},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a8/}
}
TY  - JOUR
AU  - V. V. Ishkhanov
AU  - B. B. Lur'e
TI  - Some field embedding problem with cyclic kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 144
EP  - 152
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a8/
LA  - ru
ID  - ZNSL_2003_305_a8
ER  - 
%0 Journal Article
%A V. V. Ishkhanov
%A B. B. Lur'e
%T Some field embedding problem with cyclic kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 144-152
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a8/
%G ru
%F ZNSL_2003_305_a8
V. V. Ishkhanov; B. B. Lur'e. Some field embedding problem with cyclic kernel. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 10, Tome 305 (2003), pp. 144-152. http://geodesic.mathdoc.fr/item/ZNSL_2003_305_a8/